Industrial Shock Absorbers

(Linear Decelerators)

Catalog AU08-1022-1/NA
February, 2007

■ Compact Designs

- High Effective Weight Capability

■ Industry Interchangeable
\square Metric and UNF Threads
■ Complete Line of Accessories

Parker Actuator has not only established a reputation as the world leader in motion control technology, but in quality as well.

The employees of Parker Hannifin are dedicated to building a quality product, assuring customer satisfaction, and delivering on time.

As a result of this employee focus, Parker Hannifin shock absorbers are built to the highest standards. A majority of Parker shock absorber bodies and inner pressure chambers are fully machined from solid alloy steel. A completely closed-end, one-piece pressure chamber is provided without seals or retaining rings.

The advantage of this design is that the Parker shock absorber is able to withstand much higher internal pressures or overload without damage, thereby providing a high operational safety margin.

The features listed on this page are representative of the rugged, dependable components that are built

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated on the separate page of this document entitled 'Offer of Sale'.

A WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE
This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.
The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its related companies at any time without notice.

Table of Contents

Page No.
Technical Information
Features and Benefits 2
General Information 4
Deceleration Principles 6
Sizing Examples 8
Installation Examples 12
Model Rating Charts 14
Shock Absorber Selection - Self Compensated, Miniature
MC9 - MC75 16
MC150-MC600 18
SC190-SC925 20
SC300-SC650, Heavy Weight Shock Absorbers 22
Shock Absorber Selection - Adjustable, Miniature
MA35-MA900 24
Magnum Series Shocks
MC, MA, ML 33-64 26
Large Bore Shock Absorbers
1½" Bore, Adjustable 36
CA Series 2" - 4" Bore, Self Compensated and Adjustable 38
Accessories
Miniature Shocks 46
Magnum Series Shocks 50
Air Oil Tanks 53
Offer of Sale 54

Miniature Shock Absorbers MC 150, MC 225 and MC 600 Self-Compensating

Heavyweight Shock Absorbers SC 300 and SC 650 Soft Contact and Self-Compensating

Miniature Shock Absorbers SC 190 to SC 925
Soft Contact and Self-Compensating

Heavy Industrial Shock Absorbers A2 to A3
Adjustable

Comparison

Energy Capacity

Stopping Stroke

Premise:

Same maximum reaction force.

Result:

The shock absorber can absorb considerably more energy (represented by the area under the curve.)

Benefit:

By installing a shock absorber production rates can be more than doubled without increasing deceleration forces or reaction forces on the machine.

1. Cylinder Cushions and Dashpots (High stopping force at start of the stroke).
With only one metering orifice, the moving load is abruptly slowed down at the start of the stroke. The braking force rises to a very high peak at the start of the stroke (giving high shock loads) and then falls away rapidly.
2. Springs and Rubber Bumpers (High stopping forces at end of stroke).
The moving load is slowed down by a constantly rising reaction force up to the point of full compression. These devices store energy rather than dissipate it, which causes the load to bounce back.
3. Industrial Shock Absorbers (Uniform stopping force through the entire stroke). The moving load is smoothly and gently brought to rest by a constant resisting force throughout the entire shock absorber stroke. The load is decelerated with the lowest possible force, in the shortest possible time, eliminating damaging force peaks and shock damage to machines and equipment. This is a linear deceleration force stroke curve and is the curve provided by industrial shock absorbers.

Reaction Force (stopping force)

Premise:

Same energy absorption (area under the curve).

Result:

The reaction force transmitted by the shock absorber is very much lower.

Benefit:

By installing the shock absorber the machine wear and maintenance can be drastically reduced.

Premise:
Same energy absorption.

Result:

The shock absorber stops the moving load in a much shorter time.

Benefit:

By installing a shock absorber cycle times are reduced giving much higher production rates.

The use of one piece / closed end bodies and inner pressure chambers provides an extremely strong construction, which can withstand much higher internal pressures and overload forces without mechanical damage. Consider what happens if the shock absorber is accidentally overloaded or in the unlikely event of partial oil loss due to excessive seal wear or damage. Compare the internal design used by Parker with that of some of its competitors:

Parker builds its shock absorbers with closed end/one piece bodies and inner pressure chambers, which greatly reduces the chance of sudden failure, or machine damage in the event of an overload.
What happens with an overload or gradual oil loss?
Harder bottoming out force becomes apparent.
The shock absorber continues to work and can be replaced then or at the end of the shift.

Corrective Action:

Remove and replace the shock absorber. Refill with fresh oil or repair.

Other Shock Absorber

Some other manufacturers use bodies and inner pressure chambers made from tube stock. The internal parts are held in by a snap ring etc. which then takes all the load and can fail suddenly and catastrophically.
What happens with an overload or gradual oil loss?
The snap ring breaks or is extruded due to excessive force. Machine damage!! Equipment Stops!!
Production Halted!! Emergency Repair!!
Corrective Action:
Remove and replace the shock absorber with new one (repair not possible).

* As a moving load impacts the shock absorber, the piston travels through stroke and forces hydraulic fluid through the multi-orifice inner tube. The total orifice area decreases at a rate consistent with the decay of impact velocity, resulting in true linear deceleration.
$\mathrm{F}=$ Force lbs (N)
$P=$ Internal pressure psi (bar)
$\mathrm{s}=$ Stroke in (m)
$\mathrm{t}=$ Deceleration time (s)
$\mathrm{v}=$ Velocity $\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$

Effective weight is an important factor in selecting shock absorbers. A shock absorber "sees" the impact of an object in terms of weight and velocity only; it does not "see" any propelling force. The effective weight can be thought of as the weight that the shock absorber "sees" on impact. Effective weight includes the effect of the propelling force on the performance of the shock absorber.
Failing to consider the effective weight may result in improper selection and poor performance of the shock absorber. Under extreme conditions, an effective weight that is too low may result in high forces at the start of stroke (high on-set force). However, an effective weight that is too high for the shock absorber may cause high forces at the end of stroke (high set-down force).

Consider the following examples:

1.) $A 5 \mathrm{lb}(2.27 \mathrm{~kg})$ weight travelling at $25 \mathrm{ft} / \mathrm{sec}(7.62 \mathrm{~m} / \mathrm{s})$ has $625 \mathrm{lbs}(71 \mathrm{Nm})$ of kinetic energy (Figure A). On this basis alone, an MA 3325 would be selected. However, because there is no propelling force, the calculated effective weight is five pounds - which is below the effective weight range of the standard MA 3325. This is a high on-set force at the start of the stroke (Figure B). The solution is to use a specially-orificed shock absorber to handle the load.
2.) A weight of $50 \mathrm{lbs}(22.68 \mathrm{~kg})$ has an impact velocity of 0.5 $\mathrm{ft} / \mathrm{sec}(0.15 \mathrm{~m} / \mathrm{s})$ with a propelling force of $800 \mathrm{lbs}(111 \mathrm{~N})$ (Figure C). The total impact energy is 802.5 inch-pounds. Again, an MA 3325 would be selected based just on the energy. The effective weight is calculated to be 16,050 pounds $(7,280 \mathrm{~kg})$. This is well above the range of the standard MA 3325. If this shock absorber is used, high-set-down forces will result (Figure D). In this case, the solution is to use a ML 3325, which is designed to work in low-velocity, high-effective weight applications.

Computer-Aided Simulation

By combining application data with a shock absorbers design parameters, Parker engineers can create a picture of how the shock will perform when impacted by the application load. Peak reaction force, peak deceleration (G's), time through stroke, and velocity decay are identified with extreme accuracy. The user benefits by having the guesswork taken out of sizing decisions and by knowing before installation how his shock problem will be solved.

Figure A
Low Effective Weight
$25 \mathrm{ft} / \mathrm{sec}(7.62 \mathrm{~m} / \mathrm{s})$
$\xrightarrow{\square}$

Figure B

Figure C

Figure D

Self-Compensating Shock Absorbers

In cases where non-adjustability is beneficial but the features of an adjustable shock absorber are required, self-compensating shocks meet both needs. With a range of effective weight, a self-compensating shock absorber will provide acceptable deceleration under changing energy conditions.
The orifice profile, designed by a computer that constantly arranges the size and location of each orifice while inputting changing effective weights, neutralizes the effect of changing fluid coefficients, weight, velocity, temperature and fluid compressibility.

Figure A
A linear decelerator by definition decelerates a moving weight at a linear or constant rate of deceleration. The adjustable shock absorber is able to provide linear deceleration when operated within its energy capacity and effective weight range by dialing in the required orifice area. The resulting forcestroke curve (Figure A) shows optimum (lowest) stopping force.

Figure B

Figure \mathbf{B} shows the force-stroke of a self-compensating shock absorber stopping a weight at the low end of its effective weight range. Note how the reaction forces are no longer constant but are still acceptable. The curve is skewed slightly higher at the beginning of the stroke and dips lower at the end.

Figure C

Figure \mathbf{C} is a force-stroke curve of the same selfcompensating shock absorber in Figure B but at the high end of its effective weight range. The energy curve is now skewed upward at the end of stroke and still yields acceptable deceleration.

Figure D
Figure \mathbf{D} is a family of force-stroke curves:
a. Adjustable shock absorber properly tuned, or hydro shock perfectly matched.
b. Self-compensating shock absorber at the low end of its effective weight range.
c. Self-compensating shock absorber at the high end of its effective weight range.
d. Adjustable closed down, or hydro shock not matched (dashpot effect).

Figure A

Figure B

Figure C

Figure D

W = Moving Weight
V = Impact Velocity
$\mathrm{Fp}=$ Known Propelling Force
$B=$ Propelling Cylinder Bore
$R=$ Propelling Cylinder Rod
$P=$ Air Pressure

(lbs)	$\mathrm{Hp}=$ Motor Power	(horsepower)	$\mathrm{E}_{1}=$ Kinetic Energy	(in lbs)	
(ft/sec)	$\mathrm{Mu}=$ Coefficient of Friction		$\mathrm{E}_{2}=$ Propelling Force Energy	(in lbs)	
(lbs)	C	$=$ Cycles per Hour	(hour)	$\mathrm{E}_{3}=$ Energy per Cycle	(in lbs)
(inches)	s	$=$ Stroke Length of Shock Absorber	(inches)	$\mathrm{E}_{4}=$ Energy per hour	(in lbs/hour)
(inches)	F	$=$ Propelling Force at Shock Absorber	(lbs)	We $=$ Effective Weight	(lbs)
(psi)					

H1 Weight with No Propelling Force

FORMULA
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$
$E_{1}=(F) \cdot(s)$
$E_{2}=(V)$
$E_{3}=E_{1}+E_{2}$
$E_{4}=\left(E_{3}\right) \cdot(C)$
$W e=E_{3} /(0.186) \cdot\left(V^{2}\right)$

Examples: Crash Testers, Emergency Stops

EXAMPLE

H1 - Select from Model Rating Chart: MC 3325-3 or MA 3325

H2 Weight with Propelling Force

H2 - Select from Model Rating Chart: MC 75-3

H3 Weight with Propelling Cylinder

Pick-and Place Units, Linear Slides, Robotics

$\mathrm{F}=0.785 \cdot\left(\mathrm{~B}^{2}-\mathrm{R}^{2}\right) \cdot(\mathrm{P})$
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$
$\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})$
$\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}$
$\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})$
$\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)$
$W=120 \mathrm{lbs} \quad F=0.785 \cdot\left(1.5^{2}-0^{2}\right) \bullet 60=106 \mathrm{lbs}$
$V=2 \mathrm{ft} / \mathrm{sec} \quad \mathrm{E}_{1}=(0.186) \cdot(120) \cdot\left(2^{2}\right)=89.3 \mathrm{in} \mathrm{lbs}$
$B=1.5$ inches $E_{2}=(106) \cdot(0.75)=79.5 \mathrm{in} \mathrm{lbs}$
$R=0$ inches $\quad E_{3}=89.3+79.5=168.8 \mathrm{in} \mathrm{lbs}$ $P=60 \mathrm{psi} \quad E_{4}=(168.8) \cdot(60) \quad=10,128 \mathrm{in} \mathrm{lbs} / \mathrm{h}$ $C=60 /$ hour $\quad W e=168.8 /(0.186) \cdot\left(2^{2}\right)=226.9 \mathrm{lbs}$ $\mathrm{s}=0.75$ inches
H3-Select from Model Rating Chart: MA 225 or SC 300-4

Note: $\mathrm{R}=0$ when using a rodless cylinder or a cylinder working in extension.

Lift Trucks, Stacker Units, Overhead Cranes

H4 Weight with Motor Drive

H4 - Select from Model Rating Chart: ML 6450 or MC 6450-4
H5 Weight on Power Rollers/Conveyor


```
W = Moving Weight
\(\mathrm{V}=\) Impact Velocity
\(\mathrm{Fp}=\) Known Propelling Force
M = Total Distance Moved by Weight
D = Distance Moved by Weight
    to Shock
M = Total Distance Moved by Weight to Shock
```

(lbs) $\mathrm{A}=$ Angle of Inclined Plane
(ft/sec) Wcw = Counter Weight
(lbs) C = Cycles per Hour
(inches) $\mathrm{s}=$ Stroke Length of Shock Absorber (inches) (inches)
$=$ Propelling Force at Shock Absorber
$\mathrm{F}=$ Propelling Force at Shock Absorber (lbs) $\mathrm{E}_{4}=$ Energy per hour (in lbs/hour)
(${ }^{\circ}$) $E_{1}=$ Kinetic Energy
(in lbs)
(lbs) $\mathrm{E}_{2}=$ Propelling Force Energy (in lbs)
(/hour) $\mathrm{E}_{3}=$ Energy per Cycle (in lbs)

V1 Weight, Vertical Free Fall

FORMULA
D $=(M)-(s)$
$V=\sqrt{(5.4) \bullet(D) \cdot \operatorname{SIN}(A)}$
$F=(W) \cdot \operatorname{SIN}(A)$
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$
$\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})$
$E_{3}=E_{1}+E_{2}$
$\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})$
$W e=E_{3} /(0.186) \cdot\left(V^{2}\right)$

EXAMPLE

$\mathrm{W}=200 \mathrm{lbs}$
$\mathrm{M}=18$ inches
C $=60 /$ hour
$s=3$ inches

V1 - Select from Model Rating Chart: MA 4575

V2 Weight Sliding Down Incline

$D=(M)-(s)$	$W=1,000 \mathrm{lbs}$
$V=\sqrt{(5.4) \bullet(D) \cdot \operatorname{SIN}(A)}$	$M=15$ inches
$F=(W) \bullet S I N(A)$	$A=30^{\circ}$
$E_{1}=(0.186) \bullet(W) \bullet\left(V^{2}\right)$	$C=190 /$ hour
$E_{2}=(F) \bullet(s)$	$s=2$ inches
$E_{3}=E_{1}+E_{2}$	
$E_{4}=\left(E_{3}\right) \bullet(C)$	
$W e=E_{3} /(0.186) \bullet\left(V^{2}\right)$	

V2 - Select from Model Rating Chart: MCA 6450-1 or -2

V3 Down Incline with Propelling Force

Inclined Conveyor Belt, High Speed Safety Doors

V3 - Select from Model Rating Chart: MC 150H

V4 Up Incline with Propelling Force

$\mathrm{F}=(\mathrm{Fp})-(\mathrm{W}) \cdot \operatorname{SIN}(\mathrm{A})$
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$
$\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})$
$\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}$
$\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})$
$\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)$

```
W = 450 lbs
V = 1 ft/sec
Fp = 600 lbs
A = 90'
C = 60/hour
s = 1 inch
```

$\mathrm{F}=(600)-(450) \cdot \operatorname{SIN}(90)$
$=150 \mathrm{lbs}$
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$
$\mathrm{E}_{1}=(0.186) \cdot(450) \cdot\left(1^{2}\right)$
$=83.7$ in lbs
$\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})$
$E_{2}=(150) \cdot(1) \quad=150$ in lbs
$E_{3}=E_{1}+E_{2}$
$\mathrm{E}_{3}=90+150$
$\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})$
$\mathrm{E}_{4}=(240) \cdot(60)$
$=234 \mathrm{in} \mathrm{lbs}$
$W e=E_{3} /(0.186) \cdot\left(V^{2}\right)$
$\mathrm{We}=240 /(0.2) \cdot\left(1^{2}\right)$
$=14,022 \mathrm{in} \mathrm{lbs} / \mathrm{h}$

$F=(W) \cdot \operatorname{SIN}(A)+(F p)$	$\mathrm{W}=100 \mathrm{lbs}$	$\mathrm{F}=(100) \cdot \operatorname{SIN}(15)+(50)$	$=75.9$
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$	$\mathrm{V}=2 \mathrm{ft} / \mathrm{sec}$	$\mathrm{E}_{1}=(0.186) \cdot(100) \cdot\left(2^{2}\right)$	$=74.4 \mathrm{lbs}$
$\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})$	$\mathrm{Fp}=50 \mathrm{lbs}$	$\mathrm{E}_{2}=(75.9) \cdot(0.5)$	$=38 \mathrm{in} \mathrm{lbs}$
$\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}$	$\mathrm{A}=15^{\circ}$	$\mathrm{E}_{3}=74.4+38$	$=112.4 \mathrm{in} \mathrm{lbs}$
$\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})$	C $=30 /$ hour	$\mathrm{E}_{4}=(112.4) \bullet(30)$	$=3,370.5 \mathrm{in} \mathrm{lbs}$
$\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)$	$\mathrm{s}=0.5$ inches	$\mathrm{We}=112.4 /(0.186) \cdot\left(2^{2}\right)$	$=151.1 \mathrm{in} \mathrm{lbs}$

$F=(100) \cdot \operatorname{SIN}(15)+(50)$
$=75.9$
$\mathrm{E}_{1}=(0.186) \cdot(\mathrm{W}) \cdot\left(\mathrm{V}^{2}\right)$
$\cdot(100) \cdot\left(2^{2}\right)$
lbs
$\mathrm{E}_{2}=(75.9) \cdot(0.5)$
$\mathrm{E}^{2}(112.4)$ (30)
$=112.4 \mathrm{in} \mathrm{lbs}$
$\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})$
C $=30$ hour
$\begin{array}{ll}\mathrm{E}_{4}=(112.4) \cdot(30) & =3,370.5 \mathrm{in} \mathrm{lbs} \\ \mathrm{We}=112.4 /(0.186) \cdot\left(2^{2}\right) & =151.1 \mathrm{in} \mathrm{lbs}\end{array}$

Examples: Elevator Emergency Stops, Flying Shears, Test Equipment


```
D = (18)-(3)}=15\mathrm{ inches
```

D = (18)-(3)}=15\mathrm{ inches
V = \sqrt{}{(5.4)\bullet(15)}}=9\textrm{ft}/\textrm{sec
V = \sqrt{}{(5.4)\bullet(15)}}=9\textrm{ft}/\textrm{sec
F = 200 = 200 lbs
F = 200 = 200 lbs
E
E
E
E
E}\mp@subsup{3}{3}{}=3,013.2+600= = 3,613.2 in lb
E}\mp@subsup{3}{3}{}=3,013.2+600= = 3,613.2 in lb
E
E
We=3,013.2 / (0.186)\bullet(92) = 239.8 lbs

```

Inclined Non-Powered Conveyor, Package Chute, Parts Transfer Ramp



\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{W}=\) Moving Weight & (lbs) & T = Propelling Torque & (lbs-in) & C = Cycles per Hour & (/hour) \\
\hline \(\mathrm{V}=\) Impact Velocity & (ft/sec) & Rs \(=\) Mounting Radius of the Shock & (inches) & \(\mathrm{E}_{1}=\) Kinetic Energy & (in lbs) \\
\hline Wa \(=\) Apparent Weight at & sorber (lbs) & Rt = Radius to Edge of Turntable & (inches) & \(\mathrm{E}_{2}=\) Propelling Force Energy & (in lbs) \\
\hline \(\omega\) = Angular Velocity & (\%/sec) & s = Stroke Length of Shock Absorber & (inches) & \(\mathrm{E}_{3}=\) Energy per Cycle & (in lbs) \\
\hline = Moment of Inertia & ( \(\mathrm{lb-ft-sec}{ }^{2}\) ) & \(\mathrm{H}=\) Thickness of Object & (inches) & \(\mathrm{E}_{4}=\) Energy per hour & bs/hour) \\
\hline \(\mathrm{k}=\) Radius of Gyration & (inches) & \(\mathrm{L}=\) Length of Object & (inches) & We = Effective Weight & (lbs) \\
\hline
\end{tabular}

\section*{R1 Moment of Inertia, Horizontal Plane}

Examples: Swing Bridges, Radar Antenna
FORMULA EXAMPLE

\(\left.\mathrm{Wa}=(4637 \bullet \mid) / R s^{2}\right)\)
\(V=(\mathrm{Rs}) \cdot(\omega) / 688\)
\(\mathrm{~F}=\mathrm{T} / \mathrm{Rs}\)
\(\mathrm{E}_{1}=(0.186) \cdot(\mathrm{Wa}) \cdot\left(\mathrm{V}^{2}\right)\)
\(\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})\)
\(\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}\)
\(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})\)
\(\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)\)
\begin{tabular}{|c|c|c|}
\hline \(=3,930 \mathrm{lb}-\mathrm{ft}-\mathrm{sec} 2\) & \(\mathrm{Wa}=(4,637 \cdot 3,930) /\left(40^{2}\right)\) & \(=11,390 \mathrm{lbs}\) \\
\hline \(\omega=172{ }^{\circ} \mathrm{sec}\) & \(\mathrm{V}=(40) \cdot(172) / 688\) & = \(10 \mathrm{ft} / \mathrm{sec}\) \\
\hline \(T=480,000 \mathrm{lbs}-\mathrm{in}\) & \(F=480,000 / 40\) & \(=12,000 \mathrm{lbs}\) \\
\hline Rs \(=40\) inches & \(\mathrm{E}_{1}=(0.186) \cdot(11,390) \cdot\left(10^{2}\right)\) & \(=211,854\) in lbs \\
\hline C \(=30 /\) hour & \(\mathrm{E}_{2}=(12,000) \cdot(6)\) & \(=72,000 \mathrm{in} \mathrm{lbs}\) \\
\hline = 6 inches & \(\mathrm{E}_{3}=211,854+72,000\) & \(=283,854 \mathrm{in} \mathrm{lbs}\) \\
\hline & \(\mathrm{E}_{4}=(283,854) \cdot(30)\) & 8,515,620 in lbs/h \\
\hline & \(\mathrm{We}=283,854 /(0.186) \cdot\left(10^{2}\right.\) & \(=15,260.9 \mathrm{lbs}\) \\
\hline
\end{tabular}

R1 - Select from Model Rating Chart: CA 4 x 6-3

\section*{R2 Radius of Gyration, Horizontal Plane}

Examples: Packaging Equipment, Pick-and-Place Robots

\begin{tabular}{rl}
Wa & \(=(\mathrm{W}) \bullet\left(\mathrm{k}^{2}\right) /\left(\mathrm{Rs}^{2}\right)\) \\
V & \(=(\mathrm{Rs}) \cdot(\omega) / 688\) \\
F & \(=\mathrm{T} / \mathrm{Rs}\) \\
\(\mathrm{E}_{1}\) & \(=(0.186) \cdot(\mathrm{Wa}) \bullet\left(\mathrm{V}^{2}\right)\) \\
\(\mathrm{E}_{2}\) & \(=(\mathrm{F}) \cdot(\mathrm{s})\) \\
\(\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}\) \\
\(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})\) \\
\(\mathrm{We}=\mathrm{E}_{3} /(0.186) \bullet\left(\mathrm{V}^{2}\right)\)
\end{tabular}
\(\mathrm{W}=300 \mathrm{lbs}\)
\(\mathrm{k}=2.5 \mathrm{inches}\)
\(\omega=180^{\circ} / \mathrm{sec}\)
\(\mathrm{T}=9,000 \mathrm{Ibs}-\mathrm{in}\)
\(\mathrm{Rs}=25 \mathrm{inches}\)
\(\mathrm{C}=1,200 /\) hour
\(\mathrm{S}=1\) inch
\begin{tabular}{lll}
\(\left.\mathrm{Wa}=(300) \cdot\left(2.5^{2}\right)\right) /\left(25^{2}\right)\) & & \(=3 \mathrm{lbs}\) \\
\(\mathrm{V}=(25) \cdot(180) / 688\) & & \(=6.54 \mathrm{ft} / \mathrm{sec}\) \\
F & \(=9,000 / 25\) & \\
\(\mathrm{E}_{1}=(0.186) \cdot\left(360 \cdot\left(6.54^{2}\right)\right.\) & & \(=23.87 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{E}_{2}=(360) \cdot(1)\) & & \(=360 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{E}_{3}=23.87+360\) & & \(=383.87 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{E}_{4}=(383.87) \cdot(1,200)\) & & \(=460,644 \mathrm{in} \mathrm{lbs} / \mathrm{h}\) \\
\(\mathrm{We}=383.87 /(0.186) \cdot\left(6.54^{2}\right)\) & \(=48.20 \mathrm{lbs}\)
\end{tabular}

R2 - Select from Model Rating Chart: MC 3325-1 or MA 3325

\section*{R3 Index Table}


Examples: Index Table, Rotating Work Station
\begin{tabular}{|c|c|}
\hline \(\mathrm{W}=195 \mathrm{lbs}\) & \(\left.\mathrm{Wa}=\left(195 \cdot 20^{2}\right)\right) /\left(2 \cdot 15^{2}\right)=173.3 \mathrm{lbs}\) \\
\hline Rt \(=20\) inches & \(\mathrm{V}=(15) \cdot(85) / 688=1.85 \mathrm{ft} / \mathrm{sec}\) \\
\hline \(\omega=85^{\circ} / \mathrm{sec}\) & \(\mathrm{F}=1,700 / 15=113.3 \mathrm{lbs}\) \\
\hline \(\mathrm{T}=1,700 \mathrm{lbs}-\mathrm{in}\) & \(\mathrm{E}_{1}=(0.186) \cdot(173.3) \cdot\left(1.85^{2}\right)=110.3\) in lbs \\
\hline Rs = 15 inches & \(\mathrm{E}_{2}=(113.3) \cdot(0.75)=85 \mathrm{in} \mathrm{lbs}\) \\
\hline \(C=60 /\) hour & \(\mathrm{E}_{3}=110.3+85 \quad=195.3 \mathrm{in} \mathrm{lbs}\) \\
\hline \(\mathrm{s}=.75\) inches & \[
\mathrm{E}_{4}=(195.3) \cdot(60)=11,718 \mathrm{in} \mathrm{lbs} / \mathrm{h}
\] \\
\hline
\end{tabular}

R3 - Select from Model Rating Chart: SC 300-4 or MC 225H
\begin{tabular}{|c|c|c|c|}
\hline R4 Turnover & & \multicolumn{2}{|l|}{Examples: Roll-Over Device, Paint Booths, Crate Handling} \\
\hline & \(\mathrm{Wa}=(\mathrm{W}) \bullet\left(\mathrm{H}^{2}+\mathrm{L}^{2}\right) / 12 \bullet\left(\mathrm{Rs}^{2}\right)\) & \(\mathrm{W}=150 \mathrm{lbs}\) & \(\mathrm{Wa}=(150) \cdot\left(1^{2}+38^{2}\right) /\left(12 \cdot\left(12^{2}\right)=125.43 \mathrm{lbs}\right.\) \\
\hline & \(\mathrm{V}=(\mathrm{Rs}) \bullet(\omega) / 688\) & \(L=38\) inches & \(\mathrm{V}=(12) \cdot(70) / 688=1.22 \mathrm{ft} / \mathrm{sec}\) \\
\hline & \(\mathrm{F}=\mathrm{T} / \mathrm{Rs}\) & \(\mathrm{H}=1\) inch & \(F=15,000 / 12=1,250 \mathrm{lbs}\) \\
\hline & \(\mathrm{E}_{1}=(0.186) \cdot(\mathrm{Wa}) \cdot\left(\mathrm{V}^{2}\right)\) & \(\omega=70 \% \mathrm{sec}\) & \(\mathrm{E}_{1}=(0.186) \cdot(125.43) \cdot\left(1.22^{2}\right)=34.72\) in lbs \\
\hline & \(\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})\) & \(\mathrm{T}=15,000 \mathrm{lbs}-\mathrm{in}\) & \(\mathrm{E}_{2}=(1,250) \cdot(1) \quad=1,250 \mathrm{in} \mathrm{lbs}\) \\
\hline & \(\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}\) & Rs \(=12\) inches & \(\mathrm{E}_{3}=37.34+1,250 \quad=1,284.72\) in lbs \\
\hline & \(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})\) & \(C=500 /\) hour & \(\mathrm{E}_{4}=(1,287) \cdot(500)=642,362 \mathrm{in} \mathrm{lbs} / \mathrm{h}\) \\
\hline & \(\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)\) & \(\mathrm{s}=1 \mathrm{inch}\) & \(\mathrm{We}=1,287 /(0.186) \cdot\left(1.22^{2}\right)=4,640.6 \mathrm{lbs}\) \\
\hline
\end{tabular}

R4 - Select from Model Rating Chart: MC 4525-4 or MA 4525

\section*{R5 Uniform Bar, Horizontal Plane}
\begin{tabular}{lll}
\(\mathrm{Wa}=(\mathrm{W}) \bullet\left(\mathrm{H}^{2}+4 \bullet\left\llcorner^{2}\right) / 12 \bullet\left(\mathrm{Rs}^{2}\right)\right.\) & & \(\mathrm{W}=75 \mathrm{Ibs}\) \\
\(\mathrm{V}=(\mathrm{Rs}) \bullet(\omega) / 688\) & \(\mathrm{~L}=30\) inches \\
F & \(=\mathrm{T} / \mathrm{Rs}\) & \(\mathrm{H}=2\) inches \\
\(\mathrm{E}_{1}=(0.186) \bullet(\mathrm{Wa}) \bullet\left(\mathrm{V}^{2}\right)\) & & \(\omega=180^{\circ} / \mathrm{sec}\) \\
\(\mathrm{E}_{2}=(\mathrm{F}) \bullet(\mathrm{s})\) & \(\mathrm{T}=9,000 \mathrm{lbs}-\mathrm{in}\) \\
\(\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}\) & \(\mathrm{Rs}=15\) inches \\
\(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \bullet(\mathrm{C})\) & \(\mathrm{C}=100 /\) hour \\
\(\mathrm{We}=\mathrm{E}_{3} /(0.186) \bullet\left(\mathrm{V}^{2}\right)\) & \(\mathrm{s}=1\) inch
\end{tabular}

Examples: Swinging Beam, Robotic Arm

R5- Select from Model Rating Chart: MC 4525-2 or MA 4525
\begin{tabular}{lll}
\hline ªth & 10 & \begin{tabular}{l} 
Parker Hannifin Corporation \\
Actuator Division
\end{tabular} \\
Wadsworth, Ohio USA
\end{tabular}
\begin{tabular}{lr}
\(W=\) Moving Weight & (lbs) \\
\(H=\) Thickness of Door or Arm & (inches) \\
\(\mathrm{L}=\) Length of Door or Arm & (inches) \\
\(d=\) Distance from Pivot to c of g & (inches) \\
\(\mathrm{Rs}=\) Mounting Radius of Shock Absorbers & (inches) \\
\(\omega=\) Rotational Speed of Weight & (\% \(/ \mathrm{sec}\) )
\end{tabular}
\begin{tabular}{lrllr}
\(\mathrm{T}=\) Propelling Torque & (lbs in) & \(\mathrm{E}_{1}=\) Kinetic Energy & (in Ibs) \\
\(\theta=\) Angle from the Vertical & \(\left({ }^{\circ}\right)\) & \(\mathrm{E}_{2}=\) Propelling Force Energy & (in Ibs) \\
\(\mathrm{C}=\) Cycles per Hour & (/hour) & \(\mathrm{E}_{3}=\) Energy per Cycle & (in Ibs) \\
\(\mathrm{s}=\) Stroke Length of Shock Absorber & (inches) & \(\mathrm{E}_{4}=\) Energy per hour & (in Ibs/hour) \\
\(\mathrm{F}=\) Propelling Force at Shock Absorber & (lbs) & We \(=\) Effective Weight & (lbs)
\end{tabular}

R6 Uniform Bar, Vertical Plane

\section*{FORMULA}
\(\mathrm{Wa}=(\mathrm{W}) \cdot\left(\mathrm{H}^{2}+4 \cdot \mathrm{~L}^{2}\right) / 12 \cdot\left(\mathrm{Rs}^{2}\right)\)
\(\mathrm{V}=(\mathrm{Rs}) \cdot(\omega) / 688\)
\(\mathrm{F}=[\mathrm{T}+.5 \cdot \mathrm{~L} \cdot \mathrm{~W} \cdot \mathrm{SIN}(\theta)] / \mathrm{Rs}\)
\(\mathrm{E}_{1}=(0.186) \cdot(\mathrm{Wa}) \cdot\left(\mathrm{V}^{2}\right)\)
\(\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})\)
\(E_{3}=E_{1}+E_{2}\)
\(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})\)
\(\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)\)

EXAMPLE
\(\mathrm{W}=5 \mathrm{lbs}\)
\(H=.25\) inches
\(\mathrm{L}=6\) inches
\(\theta=87.6^{\circ}\)
\(\omega=360^{\circ} / \mathrm{sec}\)
\(\mathrm{T}=20 \mathrm{lbs}-\mathrm{in}\)
Rs = 6 inches
\(C=1,800 /\) hour
\(s=.25\) inches

Examples: Cross-Conveyor Transfer, Gantry Walkway



R6-Select from Model Rating Chart: MC 25L

\section*{R7 Door, Horizontal Plane}
\(\mathrm{Wa}=(\mathrm{W}) \cdot\left(\mathrm{H}^{2}+\mathrm{L}^{2}\right) /\left(3 \cdot \mathrm{Rs}^{2}\right)\)
\(\mathrm{V}=(\mathrm{Rs}) \cdot(\omega) / 688\)
\(\mathrm{~F}=\mathrm{t} / \mathrm{Rs}\)
\(\mathrm{E}_{1}=(0.186) \cdot(\mathrm{Wa}) \cdot\left(\mathrm{V}^{2}\right)\)
\(\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})\)
\(\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}\)
\(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})\)
\(\mathrm{W}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)\)
\(\mathrm{W}=120 \mathrm{lbs}\)
\(\mathrm{H}=1 \mathrm{inch}\)
\(L=42\) inches
\(\omega=60^{\circ} / \mathrm{sec}\)
\(\mathrm{T}=1,800 \mathrm{lbs}-\mathrm{in}\)
Rs \(=10\) inches
C \(=4 /\) hour
\(\mathrm{s}=.5\) inches

\section*{Examples: Cabinet Doors, Machine Enclosures}
\begin{tabular}{rlrl}
\(\mathrm{Wa}=(120) \cdot\left(1^{2}+42^{2}\right) /\left(3 \cdot 10^{2}\right)\) & & \(=706 \mathrm{lbs}\) \\
V & \(=(10) \cdot(60) / 688\) & & \(=.9 \mathrm{ft} / \mathrm{sec}\) \\
F & \(=1,800 / 10\) & & \(=180 \mathrm{lbs}\) \\
\(\mathrm{E}_{1}=(0.186) \cdot(706) \cdot\left(.9^{2}\right)\) & & \(=106.4 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{E}_{2}=(180) \cdot(.5)\) & & \(=90 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{E}_{3}=106.4+90\) & & \(=196.4 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{E}_{4}=(196.4) \cdot(4)\) & & \(=785 \mathrm{in} \mathrm{lbs}\) \\
\(\mathrm{We}=196.4 /(0.186) \cdot\left(.9^{2}\right)\) & & \(=1,303.6 \mathrm{lbs}\)
\end{tabular}


R7-Select from Model Rating Chart: MC 225H2

\section*{R8 Door, Vertical Plane}

Examples: Hatches, Lids, Hoods
\begin{tabular}{|c|c|}
\hline  & \(\mathrm{W}=60 \mathrm{lbs}\) \\
\hline \(\mathrm{V}=(\mathrm{Rs}) \cdot(\omega) / 688\) & \(\mathrm{H}=1 \mathrm{inch}\) \\
\hline \(\mathrm{F}^{*}=[\mathrm{T}+.5 \cdot L \cdot W \cdot \mathrm{SIN}(\theta)] / \mathrm{Rs}\) & \(\mathrm{L}=10\) inches \\
\hline \(\mathrm{E}_{1}=(0.186) \cdot(\mathrm{Wa}) \cdot\left(\mathrm{V}^{2}\right)\) & \(\theta=150^{\circ}\) \\
\hline \(\mathrm{E}_{2}=(\mathrm{F}) \cdot(\mathrm{s})\) & \(\omega=200 \% \mathrm{sec}\) \\
\hline \(\mathrm{E}_{3}=\mathrm{E}_{1}+\mathrm{E}_{2}\) & \(\mathrm{T}=45 \mathrm{lbs}-\mathrm{in}\) \\
\hline \(\mathrm{E}_{4}=\left(\mathrm{E}_{3}\right) \cdot(\mathrm{C})\) & Rs \(=10\) inches \\
\hline \(\mathrm{We}=\mathrm{E}_{3} /(0.186) \cdot\left(\mathrm{V}^{2}\right)\) & C \(=1,900 /\) hour \\
\hline & . 63 inche \\
\hline
\end{tabular}
\(W \mathrm{a}=(60) \cdot\left(1^{2}+10^{2}\right) /\left(3 \cdot 10^{2}\right)=20.2 \mathrm{lbs}\)
\begin{tabular}{ll}
\(\mathrm{Va}=(10) \cdot(200) / 688\) & \(=2.9 \mathrm{ft} / \mathrm{sec}\) \\
\(\mathrm{V}=(2080\)
\end{tabular}
\(\mathrm{F}=[45+.5 \cdot 10 \cdot 60 \cdot \operatorname{SIN}(150)] / 10=19.5 \mathrm{lbs}\)
\(E_{1}=(0.186) \cdot(20.2) \cdot\left(2.9^{2}\right)=31.6 \mathrm{in} \mathrm{lbs}\)
\(E_{2}=(19.5) \cdot(0.63)=12.3\) in lbs
\(\mathrm{E}_{3}=34+12.3=43.9 \mathrm{in} \mathrm{lbs}\)
\(E_{4}=(43.9) \cdot(1,900) \quad=83,382\) in \(\mathrm{lbs} / \mathrm{h}\)
\(\mathrm{We}=43.9 /(0.186) \cdot\left(2.9^{2}\right)=28.1 \mathrm{lbs}\)

R8-Select from Model Rating Chart: SC 190-2

\section*{R9 Weight at Radius, Horizontal Plane}
```

Wa= (W)\bullet(d}\mp@subsup{}{}{2})/(R\mp@subsup{s}{}{2}
V = (Rs)\bullet(\omega)/688
E
E
E
E
We= E E / (0.186) \bullet(V V)

```
\(\begin{array}{ll}\mathrm{F}=\mathrm{T} / \mathrm{Rs} & \omega=110^{\circ} / \mathrm{sec} \\ \mathrm{E}_{1}=(0.186) \cdot(\mathrm{Wa}) \cdot\left(\mathrm{V}^{2}\right) & \mathrm{T}=150 \mathrm{lbs}-\mathrm{in}\end{array}\)
\(\mathrm{W}=40 \mathrm{lbs}\)
\(\mathrm{d}=8\) inches
Rs \(=7\) inches
\(C=1,500 /\) hour
\(\mathrm{s}=.5\) inches
\(W a=(40) \cdot\left(8^{2}\right) /\left(7^{2}\right)\)
\(\mathrm{T}=150 \mathrm{lbs}-\mathrm{in} \quad \mathrm{E}_{1}=(0.186) \cdot(52) \cdot\left(1.1^{2}\right)\)
\(\mathrm{V}=(7) \cdot(110) / 688\)
\(F=150 / 7\)
\(\mathrm{E}_{2}=(21) \cdot(.5)\)
\(\mathrm{E}_{3}=11.7+10.5\)
\(\mathrm{E}_{4}=(22.2) \cdot(1,500)\)
\(\mathrm{We}=22.2 /(0.186) \cdot\left(1.1^{2}\right)\)

\section*{1 Shock Absorbers for Pneumatic Cylinders}

For: • optimum deceleration
- higher speeds
- smaller cylinders
- reduced air consumption
- smaller valves and pipework


Example: MA \(3350 \mathrm{M}-\mathrm{Z}\)
\(-\mathrm{Z}=\) cylinder mounting

With heavy loads or high velocities normal cylinder cushions are often overloaded. This causes shock loading leading to premature cylinder failure or excessive maintenance. Using oversized cylinders to withstand this shock loading is not the best solution since this considerably increases air consumption and costs.

2 Side Load Adapter for High Side Load Angles


The side loading is removed from the shock absorber piston rod leading to considerably longer life. Wherever possible mount shock absorber so that impacting face is perpendicular to shock absorber axis half way through stroke. See pages 48 and 49 for more details.

\section*{3 Undamped Free Travel with Damped End Extension}


The lever 1 swings with the pin 2 in a slotted hole around pivot point 3 . The lever is smoothly decelerated at the extreme end of its travel.

\section*{4 One Shock Absorber for Both Ends of Travel}


It is possible to use only one shock absorber for both end positions by using different pivot points as shown.

Tip: Leave approx. 0.06 in ( 1.5 mm ) of shock absorber stroke free at each end of travel.

\section*{5 Double Acting Shock Absorber}


With a little additional work a normal unidirectional shock absorber can be converted to work in 2 directions by using a mechanism as shown.

\section*{6 Air Bleed Collar}


By using this air bleed collar the operating lifetime of shock absorbers in aggressive environments can be considerably increased. The adapter protects the shock absorber seals from cutting fluids, cleaning agents, cooking oils etc. by using a low pressure air bleed.
Available for select shock absorbers.

\section*{7 Double Stroke Length}

\(50 \%\) lower reaction force (Q) 50\% lower deceleration (a)

By driving 2 shock absorbers against one another 'nose-to-nose', the effective stroke length can be doubled.

\section*{8 Ride Over Latch}

8.1 The latch absorbs the kinetic energy so that the object contacts the fixed stop gently.
8.2 The latch absorbs the rotational energy of the turntable etc. The turntable can then be held in the datum position with a lock bolt or similar device.

\section*{9 Rotary Actuator or Rack and Pinion Drive}


The use of shock absorbers allows higher operating speeds and weights as well as protecting the drive mechanism and housing from shock loads.

\section*{10 Adjustable Stop Clamp e.g. for Handling Equipment}


The gentle deceleration of shock absorbers makes the use of adjustable stop clamps possible and removes any chance of the clamp slipping. The kinetic energy is completely removed before the mechanical stop is reached thus making high index speeds possible.

\section*{11 Ride-Over Latch e.g. Fire Door}


The fire door travels quickly until it reaches the lever. It is then gently decelerated by the lever mounted shock absorber and closes without shock or danger to personnel.

\section*{12 Increasing Stroke Length Mechanically}


By means of a lever the effective stroke length can be increased and mounting space to the left reduced.

Industrial Shock Absorbers are rated by capacity for the purpose of selecting the proper unit for an application's energy requirements. Ratings are determined by the effective weight that the shock absorber can stop and the energy it can absorb per cycle and per hour. These ratings relate to the mechanical and thermal capacity of a shock absorber because the mechanical energy is converted to heat and dissipated.

\section*{Self-Compensating Models}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model Number} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Stroke } \\
\text { inches } \\
1 \text { inch }=25.4 \mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { E3 Max Energy } \\
\text { per Cycle, } \\
\text { inch Ibs } \\
1 \text { in } \mathrm{lb}=.11 \mathrm{Nm}
\end{gathered}
\]} & \multirow[t]{2}{*}{We Effective Weight \(\mathrm{lbs}, 1 \mathrm{lb}=.45 \mathrm{~kg}\)} & \multicolumn{3}{|r|}{E4 Max Energy per hour, in Ibs/hour 1 in lb/hour = . \(11 \mathrm{Nm} /\) hour} & \multirow[t]{2}{*}{Product Catalog Page} \\
\hline & & & & Self-Contained & A/O Tank & A/O Re-circulating & \\
\hline MC 9-1 & 0.20 & 9 & 1.35-7.0 & 18,000 & N/A & N/A & 16 \\
\hline MC 9-2 & 0.20 & 9 & 1.75-9.0 & 18,000 & N/A & N/A & 16 \\
\hline MC 10L & 0.20 & 4 & 0.75-6.0 & 35,000 & N/A & N/A & 16 \\
\hline MC 10H & 0.20 & 7 & 1.5-11 & 35,000 & N/A & N/A & 16 \\
\hline MC 25L & 0.25 & 20 & 1.5-5 & 120,000 & & & 16 \\
\hline MC 25 & 0.25 & 20 & 4-12 & 120,000 & N/A & N/A & 16 \\
\hline MC 25 H & 0.25 & 20 & 10-30 & 120,000 & & & 16 \\
\hline MC 75-1 & 0.40 & 75 & 0.5-2.5 & 250,000 & & & 16 \\
\hline MC 75-2 & 0.40 & 75 & 2-14 & 250,000 & N/A & N/A & 16 \\
\hline MC 75-3 & 0.40 & 75 & 6-80 & 250,000 & & & 16 \\
\hline MC 150 & 0.50 & 150 & 2-22 & 300,000 & & & 18 \\
\hline MC 150H & 0.50 & 150 & 20-200 & 300,000 & N/A & N/A & 18 \\
\hline MC 150 H 2 & 0.50 & 150 & 150-450 & 300,000 & & & 18 \\
\hline MC 225 & 0.50 & 225 & 5-55 & 400,000 & & & 18 \\
\hline MC 225H & 0.50 & 225 & 50-500 & 400,000 & N/A & N/A & 18 \\
\hline MC 225H2 & 0.50 & 225 & 400-2,000 & 400,000 & & & 18 \\
\hline MC 600 & 1.00 & 600 & 20-300 & 600,000 & & & 18 \\
\hline MC 600H & 1.00 & 600 & 250-2,500 & 600,000 & N/A & N/A & 18 \\
\hline \(\mathrm{MC} \mathrm{600H2}\) & 1.00 & 600 & 880-5,000 & 600,000 & & & 18 \\
\hline SC 190-1 & 0.63 & 225 & 3-15 & 300,000 & & & 20 \\
\hline SC 190-2 & 0.63 & 225 & 8-40 & 300,000 & & & 20 \\
\hline SC 190-3 & 0.63 & 225 & 20-100 & 300,000 & N/A & N/A & 20 \\
\hline SC 190-4 & 0.63 & 225 & 50-225 & 300,000 & & & 20 \\
\hline SC 300-1 & 0.75 & 300 & 3-18 & 400,000 & & & 20 \\
\hline SC 300-2 & 0.75 & 300 & 10-60 & 400,000 & & & 20 \\
\hline SC 300-3 & 0.75 & 300 & 30-180 & 400,000 & & & 20 \\
\hline SC 300-4 & 0.75 & 300 & 70-450 & 400,000 & & & 20 \\
\hline SC 300-5 & 0.59 & 650 & 25-100 & 400,000 & N/A & N/A & 22 \\
\hline SC 300-6 & 0.59 & 650 & 75-300 & 400,000 & & & 22 \\
\hline SC 300-7 & 0.59 & 650 & 200-400 & 400,000 & & & 22 \\
\hline SC 300-8 & 0.59 & 620 & 300-1,500 & 400,000 & & & 22 \\
\hline SC 300-9 & 0.59 & 620 & 700-4,300 & 400,000 & & & 22 \\
\hline SC 650-1 & 1.00 & 650 & 17-100 & 600,000 & & & 20 \\
\hline SC 650-2 & 1.00 & 650 & 50-300 & 600,000 & & & 20 \\
\hline SC 650-3 & 1.00 & 650 & 150-900 & 600,000 & & & 20 \\
\hline SC 650-4 & 1.00 & 650 & 450-2,600 & 600,000 & & & 20 \\
\hline SC 650-5 & 0.91 & 1,860 & 50-250 & 600,000 & N/A & N/A & 22 \\
\hline SC 650-6 & 0.91 & 1,860 & 200-800 & 600,000 & & & 22 \\
\hline SC 650-7 & 0.91 & 1,860 & 700-2,400 & 600,000 & & & 22 \\
\hline SC 650-8 & 0.91 & 1,860 & 1,700-5,800 & 600,000 & & & 22 \\
\hline SC 650-9 & 0.91 & 1.860 & 4.000-14.000 & 600,000 & & & 22 \\
\hline SC 925-1 & 1.58 & 975 & 30-200 & 800,000 & & & 20 \\
\hline SC 925-2 & 1.58 & 975 & 90-600 & 800,000 & N/A & N/A & 20 \\
\hline SC 925-3 & 1.58 & 975 & 250-1,600 & 800,000 & N/A & N/A & 20 \\
\hline SC 925-4 & 1.58 & 975 & 750-4,600 & 800,000 & & & 20 \\
\hline MC 3325-1 & & & 20-80 & & & & \\
\hline MC 3325-2 & 0.91 & 1,350 & 68-272 & 670,000 & 1,100,000 & 1,500,000 & 26, 28 \\
\hline MC 3325-3
MC 3325-4 & 0.91 & 1,350 & \[
\begin{gathered}
230-920 \\
780-3.120
\end{gathered}
\] & 670,000 & & 1,500,000 & 26, 2 \\
\hline MC 3350-1 & & & 40-160 & & & & \\
\hline MC 3350-2 & 1.91 & & 136-544 & & & & \\
\hline MC 3350-3 & 1.91 & 2,700 & 460-1,840 & 760,000 & 1,200,000 & 1,600,000 & 26, 28 \\
\hline MC 3350-4 & & & 1,560-6,240 & & & & \\
\hline MC 3625-1 & & & 20-80 & & & & \\
\hline MC 3625-2 & 0.91 & 1,350 & & 670,000 & 1,100,000 & 1,500,000 & 26, 28 \\
\hline \[
\begin{aligned}
& \text { MC 3625-3 } \\
& \text { MC } 3625-4 \\
& \hline
\end{aligned}
\] & 0.91 & 1,350 & \[
\begin{gathered}
230-920 \\
780-3,120
\end{gathered}
\] & 670,000 & 1,100,000 & 1,500,000 & 26, 28 \\
\hline MC 3650-1 & & & 40-160 & & & & \\
\hline MC 3650-2 & 1.91 & 2,700 & \[
136-544
\] & 760,000 & 1,200,000 & 1,600,000 & 26, 28 \\
\hline MC 3650-3 & 1.91 & 2,700 & \[
\begin{gathered}
460-1,840
\end{gathered}
\] & 760,000 & 1,200,000 & 1,600,000 & 26, 28 \\
\hline MC 3650-4 & & & & & & & \\
\hline MC 4525-1 & & & 50-200 & & & & \\
\hline MC 4525-2 & 0.91 & 3,000 & & 950,000 & 1,400,000 & 1,700,000 & 26, 30 \\
\hline MC 4525-3 MC 4525-4 & 0.91 & 3,000 & \[
\begin{array}{r}
575-2,300 \\
1,950-7.800 \\
\hline
\end{array}
\] & 950,000 & 1,400,000 & 1,700,000 & 26, 30 \\
\hline MC 4550-1 & & & 100-400 & & & & \\
\hline MC 4550-2 & 1.91 & 6,000 & \[
340-1,360
\] & 1,000,000 & 1,700,000 & 2,200,000 & \\
\hline MC 4550-3
MC 4550-4 & 1.91 & 6,000 & \[
\begin{aligned}
& 1,150-4,600 \\
& 3
\end{aligned}
\] & 1,000,000 & 1,700,000 & 2,200,000 & 26, 30 \\
\hline MC 4550-4 & & & & & & & \\
\hline MC 4575-1 & & & 150-600 & & & & \\
\hline MC 4575-2 & 2.91 & 9,000 & 510-2,040 & 1,300,000 & 2,000,000 & 2,500,000 & 22, 30 \\
\hline MC 4575-3 & 2.91 & 9,000 & 1,730-6,920 & & & & \\
\hline MC 4575-4 & & & 5,850-23,400 & & & & \\
\hline MC 6450-1 & & & 300-1,200 & & & & \\
\hline MC 6450-2 & 1.91 & & 1,020-4,080 & 1,300,000 & 2,600,000 & & \\
\hline MC 6450-3 & 1.91 & 15,000 & 3,460-13,840 & 1,300,000 & 2,600,000 & 3,400,000 & 26, 32 \\
\hline MC 6450-4 & & & 11,700-46,800 & & & & \\
\hline MC 64100-1 & & & 600-2,400 & & & & \\
\hline MC 64100-2 & 3.91 & 30,000 & 2,040-8,160 & 1,700,000 & 3,400,000 & 4,400,000 & 26, 32 \\
\hline MC 64100-3 & 3.91 & 30,00 & 6,920-27,680 & 1,700,000 & 3,400,000 & 4,400,000 & 26, 32 \\
\hline MC 64100-4 & & & 23,400-93,600 & & & & \\
\hline MC 64150-1 & & & 900-3,600 & & & & \\
\hline MC 64150-2 & & & 3,060-12,240 & & & & \\
\hline MC 64150-3 & 5.91 & 45,000 & 10,380-41,520 & 2,200,000 & 4,400,000 & 5,700,000 & 26, 32 \\
\hline MC 64150-4 & & & 35,100-140,400 & & & & \\
\hline
\end{tabular}

Self-Compensating Models Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model Number} & \multirow[t]{2}{*}{Stroke inches 1 inch = 25.4 mm} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { E3 Max Energy } \\
& \text { per Cycle, } \\
& \text { inch lbs } \\
& 1 \text { in lb }=.11 \mathrm{Nm}
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
We \\
Effective Weight lbs, \(1 \mathrm{lb}=.45 \mathrm{~kg}\)
\end{tabular}} & \multicolumn{3}{|l|}{E4 Max Energy per hour, in lbs/hour \(1 \mathrm{in} \mathrm{lb/hour}=.11 \mathrm{Nm} /\) hour} & \multirow[t]{2}{*}{Product Catalog Page} \\
\hline & & & & Self-Contained & A/O Tank & A/O Re-circulating & \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 2-1 \\
& \text { CA } 2 \times 2-2 \\
& \text { CA } 2 \times 2-3 \\
& \text { CA } 2 \times 2-4 \\
& \hline
\end{aligned}
\] & 2.00 & 32,000 & \[
\begin{array}{r}
1,600-4,800 \\
4,000-1,000 \\
10,000-30,000 \\
25,000-75,000 \\
\hline
\end{array}
\] & 9,600,000 & 12,000,000 & 15,600,000 & 38, 40 \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 4-1 \\
& \text { CA } 2 \times 4-2 \\
& \text { CA } 2 \times 4-3 \\
& \text { CA } 2 \times 4-4 \\
& \hline
\end{aligned}
\] & 4.00 & 64,000 & \(3.200-9.600\)
\(8,000-24,000\)
\(20,000-60,000\)
\(50,000-150,000\) & 12,000,000 & 15,000,000 & 19,500,000 & 38, 40 \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 6-1 \\
& \text { CA } 2 \times 6-2 \\
& \text { CA } 2 \times 6-3 \\
& \text { CA } 2 \times 6-4 \\
& \hline
\end{aligned}
\] & 6.00 & 96,000 & \[
\begin{array}{r}
4,800-14,400 \\
12,000-36,000 \\
30,000-90,000 \\
75,000-225,000 \\
\hline
\end{array}
\] & 14,400,000 & 18,000,000 & 23,500,000 & 38, 40 \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 8-1 \\
& \text { CA } 2 \times 8-2 \\
& \text { CA } 2 \times 8-3 \\
& \text { CA } 2 \times 8-4 \\
& \hline
\end{aligned}
\] & 8.00 & 128,000 & \[
\begin{gathered}
6,400-19,200 \\
16,000-48,000 \\
40,000-120,000 \\
100,000-300,000 \\
\hline
\end{gathered}
\] & 16,800,000 & 21,000,000 & 27,000,000 & 38, 40 \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 10-1 \\
& \text { CA } 2 \times 10-2 \\
& \text { CA } 2 \times 10-3 \\
& \text { CA } 2 \times 10-4 \\
& \hline
\end{aligned}
\] & 10.00 & 160,000 & \[
\begin{array}{r}
8,000-24,000 \\
20,000-60,000 \\
50,000-150,000 \\
125,000-375,000 \\
\hline
\end{array}
\] & 19,200,000 & 24,000,000 & 31,000,000 & 38, 40 \\
\hline \begin{tabular}{l}
CA \(3 \times 5-1\) \\
CA \(3 \times 5-2\) \\
CA \(3 \times 5-3\) \\
CA \(3 \times 5-4\)
\end{tabular} & 5.00 & 125,000 & \[
\begin{gathered}
6,400-19,200 \\
16,000-48,000 \\
40,000-120,000 \\
100,000-300,000 \\
\hline
\end{gathered}
\] & 20,000,000 & 25,000,000 & 32,500,000 & 38, 40 \\
\hline \begin{tabular}{l}
CA \(3 \times 8\) - 1 \\
CA \(3 \times 8\)-2 \\
CA \(3 \times 8\)-3 \\
CA \(3 \times 8-4\)
\end{tabular} & 8.00 & 200,000 & \(10,240-30,720\)
\(25,600-76,800\)
\(64,000-192,000\)
\(160,000-480,000\) & 32,000,000 & 40,000,000 & 52,000,000 & 38, 40 \\
\hline \begin{tabular}{l}
CA \(3 \times 12-1\) \\
CA \(3 \times 12-2\) \\
CA \(3 \times 12-3\) \\
CA \(3 \times 12-4\)
\end{tabular} & 12.00 & 300,000 & \(15,360-46,080\)
\(38,400-115,200\) 96,000-288,000 240,000-720,000 & 48,000,000 & 60,000,000 & 78,000,000 & 38, 40 \\
\hline CA 4x6-3 & 6.00 & 420,000 & 8,000-19,000 & 27,000,000 & 45,000,000 & 58,000,000 & 38, 44 \\
\hline CA 4x6-5 & 6.00 & 420,000 & 19,000-41,000 & 27,000,000 & 45,000,000 & 58,000,000 & 38, 44 \\
\hline CA \(4 \times 6\)-7 & 6.00 & 420,000 & 41,000-94,000 & 27,000,000 & 45,000,000 & 58,000,000 & 38, 44 \\
\hline CA 4x8-3 & 8.00 & 560,000 & 11,000-25,000 & 30,000,000 & 50,000,000 & 65,000,000 & 38, 44 \\
\hline CA 4x8-5 & 8.00 & 560,000 & 25,000-55,000 & 30,000,000 & 50,000,000 & 65,000,000 & 38, 44 \\
\hline CA 4x8-7 & 8.00 & 560,000 & 55,000-125,000 & 30,000,000 & 50,000,000 & 65,000,000 & 38, 44 \\
\hline CA 4x16-3 & 16.00 & 1,120,000 & 22,000-50,000 & 50,000,000 & 85,000,000 & 110,000,000 & 38, 44 \\
\hline CA \(4 \times 16-5\) & 16.00 & 1,120,000 & 50,000-110,000 & 50,000,000 & 85,000,000 & 110,000,000 & 38, 44 \\
\hline CA 4x16-7 & 16.00 & 1,120,000 & 110,000-250,000 & 50,000,000 & 85,000,000 & 110,000,000 & 38, 44 \\
\hline
\end{tabular}

\section*{Adjustable Models}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MA 35 & 0.40 & 35 & 13-125 & 53,000 & \multirow{5}{*}{N/A} & \multirow{5}{*}{N/A} & 24 \\
\hline MA 150 & 0.50 & 150 & 2-200 & 300,000 & & & 24 \\
\hline MA 225 & 0.75 & 225 & 5-500 & 400,000 & & & 24 \\
\hline MA 600 & 1.00 & 600 & 20-3,000 & 600,000 & & & 24 \\
\hline MA 900 & 1.58 & 900 & 30-4,500 & 800,000 & & & 24 \\
\hline MA 3325 & 0.91 & 1,500 & 20-3,800 & 670,000 & 1,100,000 & 1,500,000 & 27 \\
\hline MA 3350 & 1.91 & 3,000 & 28-5,400 & 760,000 & 1,200,000 & 1,600,000 & 27 \\
\hline MA 3625 & 0.91 & 1,500 & 20-3,800 & 670,000 & 1,100,000 & 1,500,000 & 27 \\
\hline MA 3650 & 1.91 & 3,000 & 28-5,400 & 760,000 & 1,200,000 & 1,600,000 & 27 \\
\hline MA 4525 & 0.91 & 3,450 & 95-22,000 & 950,000 & 1,400,000 & 1,700,000 & 27, 30 \\
\hline MA 4550 & 1.91 & 6,900 & 150-32,000 & 1,000,000 & 1,700,000 & 2,200,000 & 27, 30 \\
\hline MA 4575 & 2.91 & 10,350 & 155-33,000 & 1,300,000 & 2,000,000 & 2,500,000 & 27, 30 \\
\hline MA 6450 & 1.91 & 18,000 & 480-110,000 & 1,300,000 & 2,600,000 & 3,400,000 & 27, 32 \\
\hline MA 64100 & 3.91 & 36,000 & 600-115,000 & 1,700,000 & 3,400,000 & 4,400,000 & 27, 32 \\
\hline MA 64150 & 5.91 & 54,000 & 730-175,000 & 2,200,000 & 4,400,000 & 5,700,000 & 27, 32 \\
\hline 1-1/2x2 & 2.00 & 16,000 & 430-70,000 & 3,200,000 & 4,000,000 & 5,200,000 & 36 \\
\hline 1-1/2×3-1/2 & 3.50 & 28,000 & 480-80,000 & 5,600,000 & 7,000,000 & 9,100,000 & 36 \\
\hline 1-1/2x5 & 5.00 & 40,000 & 500-90,000 & 8,000,000 & 10,000,000 & 13,000,000 & 36 \\
\hline 1-1/2x6-1/2 & 6.50 & 52,000 & 680-100,000 & 10,400,000 & 13,000,000 & 17,000,000 & 36 \\
\hline A \(2 \times 2\) & 2.00 & 32,000 & 560-170,000 & 9,600,000 & 12,000,000 & 15,600,000 & 39, 40 \\
\hline A \(2 \times 4\) & 4.00 & 80,000 & 510-160,000 & 12,000,000 & 15,000,000 & 19,500,000 & 39, 40 \\
\hline A \(2 \times 6\) & 6.00 & 120,000 & 570-190,000 & 14,400,000 & 18,000,000 & 23,500,000 & 39, 40 \\
\hline A \(2 \times 8\) & 8.00 & 170,000 & 580-200,000 & 16,800,000 & 21,000,000 & 27,000,000 & 39, 40 \\
\hline A \(2 \times 10\) & 10.00 & 210,000 & 720-250,000 & 19,200,000 & 24,000,000 & 31,000,000 & 39, 40 \\
\hline A 3x5 & 5.00 & 140,000 & 1,050-340,000 & 20,000,000 & 25,000,000 & 32,500,000 & 39, 40 \\
\hline A 3x8 & 8.00 & 250,000 & 1,200-400,000 & 32,000,000 & 40,000,000 & 52,000,000 & 39, 40 \\
\hline A \(3 \times 12\) & 12.00 & 390,000 & 1,350-450,000 & 48,000,000 & 60,000,000 & 78,000,000 & 39, 40 \\
\hline
\end{tabular}

\section*{Low Velocity Adjustable Models}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ML 3325 & 0.91 & 1,500 & .05-1.5 & 670,000 & 1,100,000 & 1,500,000 & 27 \\
\hline ML 3350 & 1.91 & 3,000 & .05-1.5 & 760,000 & 1,200,000 & 1,600,000 & 27 \\
\hline ML 3625 & 0.91 & 1,500 & .05-1.5 & 670,000 & 1,100,000 & 1,500,000 & 27 \\
\hline ML 3650 & 1.91 & 3,000 & .05-1.5 & 760,000 & 1,200,000 & 1,600,000 & 27 \\
\hline ML 4525 & 0.91 & 3,450 & .05-1.5 & 950,000 & 1,400,000 & 1,700,000 & 27, 30 \\
\hline ML 4550 & 1.91 & 6,900 & .05-1.5 & 1,000,000 & 1,700,000 & 2,200,000 & 27, 30 \\
\hline ML 6425 & 0.91 & 9,000 & .05-1.5 & 1,100,000 & 2,200,000 & 2,900,000 & 27, 32 \\
\hline ML 6450 & 1.91 & 18,000 & .05-1.5 & 1,300,000 & 2,600,000 & 3,400,000 & 27, 32 \\
\hline
\end{tabular}


\section*{Miniature Shock Absorbers}
are self-contained hydraulic units. The MC 9 to MC 75 model range has a very short overall length and low return force. Its small size allows for high energy absorption in confined spaces, while the wide effective weight ranges accommodate a variety of load conditions. With threaded outer bodies and multiple accessories, MC models can be mounted in numerous configurations.
Applications include: small linear slides, material handling and packaging equipment, small robotics, office and medical equipment, as well as instrumentation.

\section*{Ordering Information}


\section*{Miniature Shock Absorbers MC 9 to MC 75}

Self-Compensating


Dimensions IN INCHES (MILLIMETERS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & Stroke & A & B & C & D & E & F & H & J & M & T & EE & FF \\
\hline MC 9M & \[
\begin{gathered}
.20 \\
(5.0)
\end{gathered}
\] & \[
\begin{gathered}
1.42 \\
(36.0)
\end{gathered}
\] & \[
\begin{gathered}
.40 \\
(10.0)
\end{gathered}
\] & N/A & \[
\begin{gathered}
.08 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
.20 \\
(5.0)
\end{gathered}
\] & \[
\begin{gathered}
.83 \\
(21.1)
\end{gathered}
\] & \[
\begin{gathered}
.19 \\
(4.7)
\end{gathered}
\] & \[
\begin{gathered}
.20 \\
(5.0)
\end{gathered}
\] & \[
\begin{gathered}
.10 \\
(2.5)
\end{gathered}
\] & M6x0.5 & N/A & N/A \\
\hline MC 10E MC 10M & \[
\begin{gathered}
\hline .20 \\
(5.0)
\end{gathered}
\] & \[
\begin{gathered}
1.52 \\
(38.6)
\end{gathered}
\] & \[
\begin{gathered}
.40 \\
(10.0)
\end{gathered}
\] & N/A & \[
\begin{gathered}
\hline .08 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
\hline .25 \\
(6.4)
\end{gathered}
\] & \[
\begin{gathered}
.83 \\
(21.1)
\end{gathered}
\] & \[
\begin{gathered}
\hline .19 \\
(4.7)
\end{gathered}
\] & \[
\begin{gathered}
\hline .20 \\
(5.0)
\end{gathered}
\] & \[
\begin{gathered}
.19 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { M } 8 \times 0.75 \\
\text { M } 8 \times 1
\end{gathered}
\] & N/A & N/A \\
\hline MC 25 MC 25M & \[
\begin{gathered}
\hline .26 \\
(6.6)
\end{gathered}
\] & \[
\begin{gathered}
2.27 \\
(57.7)
\end{gathered}
\] & \[
\begin{gathered}
.57 \\
(14.5)
\end{gathered}
\] & N/A & \[
\begin{gathered}
\hline .13 \\
(3.3)
\end{gathered}
\] & \[
\begin{gathered}
\hline .33 \\
(8.4)
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
(33.0)
\end{gathered}
\] & \[
\begin{gathered}
\hline .30 \\
(7.6)
\end{gathered}
\] & \[
\begin{gathered}
\hline .32 \\
(8.1)
\end{gathered}
\] & \[
\begin{gathered}
\hline .20 \\
(5.0)
\end{gathered}
\] & \[
\begin{array}{|c|c|}
\hline \text { M10x1 } 32 \text { UNEF } \\
\hline
\end{array}
\] & N/A & N/A \\
\hline MC 75 MC 75M & \[
\begin{gathered}
.40 \\
(10.2)
\end{gathered}
\] & \[
\begin{gathered}
2.76 \\
(70.1)
\end{gathered}
\] & \[
\begin{gathered}
.72 \\
(18.1)
\end{gathered}
\] & N/A & \[
\begin{gathered}
.13 \\
(3.3)
\end{gathered}
\] & \[
\begin{gathered}
.41 \\
(10.4)
\end{gathered}
\] & \[
\begin{gathered}
1.74 \\
(44.2)
\end{gathered}
\] & \[
\begin{gathered}
.30 \\
(7.6)
\end{gathered}
\] & \[
\begin{gathered}
.32 \\
(8.1)
\end{gathered}
\] & \[
\begin{gathered}
.18 \\
(4.6)
\end{gathered}
\] & \[
\begin{gathered}
\text { 1/2-20 UNF } \\
\text { M12x1 }
\end{gathered}
\] & N/A & N/A \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & \multicolumn{2}{|l|}{Effective Weight Ibs (kg)} & \begin{tabular}{l}
\(\mathrm{E}_{3}\) \\
Energy per Cycle in lbs (Nm)
\end{tabular} & Energy per Hour in lbs/hour (Nm/hour) & \[
\begin{aligned}
& \text { Return Force } \\
& \text { lbs (N) }
\end{aligned}
\] & Return Time
sec & Shipping Weight
lbs (kg) \\
\hline \[
\begin{aligned}
& \hline \text { MC 9M-1 } \\
& \text { MC 9M-2 }
\end{aligned}
\] & \[
\begin{aligned}
& 1.35-7.0 \\
& 1.75-9.0
\end{aligned}
\] & \[
\begin{aligned}
& (0.6-3.2) \\
& (0.8-4.1)
\end{aligned}
\] & 9.0 (1.0) & 18,000 (2,000) & 0.31-0.85 (1.38-3.78) & 0.30 & 0.01 (0.004) \\
\hline MC 10L MC 10H & \[
\begin{gathered}
0.75-6.0 \\
1.5-11
\end{gathered}
\] & \[
\begin{aligned}
& (0.34-3) \\
& (0.68-5)
\end{aligned}
\] & \[
\begin{array}{ll}
4.0 & (0.45) \\
7.0 & (0.79)
\end{array}
\] & 35,000 (3,950) & 0.5-1.0 (2.22-4.45) & 0.20 & . 02 (0.01) \\
\hline MC 25L MC 25 MC 25H & \[
\begin{gathered}
\hline 1.5-5.0 \\
4-12 \\
10-30 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
(0.70-2) \\
(2-5) \\
(5-14)
\end{gathered}
\] & 20 (2) & 120,000 (13,550) & 0.8-1.7 (3.56-7.56) & 0.20 & . 06 (0.03) \\
\hline \begin{tabular}{l}
MC 75-1 \\
MC 75-2 \\
MC 75-3
\end{tabular} & \[
\begin{aligned}
& .5-2.5 \\
& 2-14 \\
& 6-80
\end{aligned}
\] & \[
\begin{gathered}
(0.23-1) \\
(0.91-6) \\
(3-36)
\end{gathered}
\] & 75 (8) & 250,000 (28,240) & 1.0-2.5 (4.45-11.12) & 0.30 & . 09 (0.04) \\
\hline
\end{tabular}

\section*{Technical Data}

Impact velocity range:
MC 9: 0.5 to \(6 \mathrm{ft} / \mathrm{sec}(0.15\) to \(1.8 \mathrm{~m} / \mathrm{sec})\)
MC 10: 0.5 to \(5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(1.5 \mathrm{~m} / \mathrm{sec})\)
MC 25: 0.5 to \(8 \mathrm{ft} / \mathrm{sec}(0.15\) to \(2.4 \mathrm{~m} / \mathrm{sec}\) )
MC 75: 0.5 to \(12 \mathrm{ft} / \mathrm{sec}(0.15\) to \(3.66 \mathrm{~m} / \mathrm{sec}\) )
Operating temperature:
MC 9 and MC 10: \(14^{\circ}\) to \(158^{\circ} \mathrm{F}\left(-10^{\circ}\right.\) to \(\left.70^{\circ} \mathrm{C}\right)\)
MC 25: \(32^{\circ}\) to \(150^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
MC 75: \(32^{\circ}\) to \(150^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical stop: Integral mechanical stop built into front of units.

Oil type: Silicone
Materials: Steel body with black oxide finish.
Hardened stainless steel piston rod.
Technical data applies to standard and metric threaded models.
Maximum side load depends on application. For additional information contact The Actuator Division.

Lock nut included with each shock absorber.
Note: All dimensions and tolerance values listed in this catalog are nominal and subject to change without notice.

Miniature Shock Absorbers MC 150 to MC 600
Self-Compensating


\section*{Miniature Shock Absorbers}

MC 150 to MC 600 model range, feature a hermetically sealed rolling diaphragm seal system that provides the highest possible cycle lifetime and an extremely low rod return force. These models can be directly mounted into the end cover of pneumatic cylinders to provide superior damping compared to normal cylinder cushions. Use of the optional stop collar is recommended to provide a positive mechanical stop. By adding the optional side load adapter (metric threaded models only), it is possible to accept side loads up to \(25^{\circ}\) from the axis.
Applications for the durable MC Series include: material handling, medium robotics, machine tools, pick and place systems, as well as packaging equipment.

\section*{Ordering Information}


Miniature Shock Absorbers MC \(\mathbf{1 5 0}\) to MC \(\mathbf{6 0 0}\)
Self-Compensating

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{Dimensions IN INCHES (MILLIMETERS)} \\
\hline Model & Stroke & A & B & C & D & E & F & H & J & M & T & EE & FF \\
\hline MC 150 MC 150M MC 150ME & \[
\begin{gathered}
.50 \\
(12.8)
\end{gathered}
\] & \[
\begin{gathered}
3.41 \\
(86.6)
\end{gathered}
\] & \[
\begin{gathered}
.69 \\
(17.5)
\end{gathered}
\] & \[
\begin{gathered}
.18 \\
(4.6)
\end{gathered}
\] & \[
\begin{gathered}
.19 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
.46 \\
(11.6)
\end{gathered}
\] & \[
\begin{gathered}
2.44 \\
(62.0)
\end{gathered}
\] & \[
\begin{gathered}
.47 \\
(11.9)
\end{gathered}
\] & \[
\begin{gathered}
.39 \\
(9.9)
\end{gathered}
\] & \[
\begin{gathered}
.28 \\
(7.1)
\end{gathered}
\] & \[
\begin{gathered}
\text { 9/16-18 UNF } \\
\text { M14x1.5 } \\
\text { M14x1 }
\end{gathered}
\] & \[
\begin{gathered}
.500 \\
(12.0)
\end{gathered}
\] & \[
\begin{array}{|c}
.50 \\
(12.7)
\end{array}
\] \\
\hline \begin{tabular}{l}
MC 225 \\
MC 225M \\
MC 225ME
\end{tabular} & \[
\begin{gathered}
.50 \\
(12.8)
\end{gathered}
\] & \[
\begin{gathered}
3.81 \\
(96.8)
\end{gathered}
\] & \[
\begin{gathered}
.69 \\
(17.5)
\end{gathered}
\] & \[
\begin{gathered}
.16 \\
(4.1)
\end{gathered}
\] & \[
\begin{gathered}
.25 \\
(6.4)
\end{gathered}
\] & \[
\begin{gathered}
.66 \\
(16.7)
\end{gathered}
\] & \[
\begin{gathered}
2.84 \\
(72.1)
\end{gathered}
\] & \[
\begin{gathered}
.66 \\
(16.8)
\end{gathered}
\] & \[
\begin{gathered}
.36 \\
(9.1)
\end{gathered}
\] & \[
\begin{gathered}
.28 \\
(7.1)
\end{gathered}
\] & \[
\begin{gathered}
\text { 3/4-16 UNF } \\
\text { M20x1.5 } \\
\text { M20x1 }
\end{gathered}
\] & \[
\begin{array}{|c}
.687 \\
(18.0)
\end{array}
\] & \[
\begin{array}{|c}
.50 \\
(12.7)
\end{array}
\] \\
\hline MC 600 MC 600 M MC 600ML & \[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\] & \[
\begin{gathered}
5.58 \\
(141.8)
\end{gathered}
\] & \[
\begin{gathered}
1.24 \\
(31.6)
\end{gathered}
\] & \[
\begin{gathered}
.23 \\
(5.8)
\end{gathered}
\] & \[
\begin{gathered}
.31 \\
(7.9)
\end{gathered}
\] & \[
\begin{gathered}
.87 \\
(22.0)
\end{gathered}
\] & \[
\begin{gathered}
4.06 \\
(103.1)
\end{gathered}
\] & \[
\begin{gathered}
.89 \\
(22.6)
\end{gathered}
\] & \[
\begin{gathered}
.47 \\
(11.9)
\end{gathered}
\] & \[
\begin{gathered}
.28 \\
(7.1)
\end{gathered}
\] & \[
\begin{gathered}
\text { 1-12 UNF } \\
\text { M } 25 \times 1.5 \\
\text { M } 27 \times 3
\end{gathered}
\] & \[
\begin{gathered}
.875 \\
(23.0)
\end{gathered}
\] & \[
\begin{array}{|c}
.50 \\
(12.7)
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Specifications} \\
\hline Model & \multicolumn{2}{|l|}{\begin{tabular}{l}
We \\
Effective Weight lbs \\
(kg)
\end{tabular}} & \(\mathrm{E}_{3}\) Energy per Cycle in lbs (Nm) & \[
\begin{array}{|c|}
\hline \mathrm{E}_{4} \\
\text { Energy per Hour } \\
\text { in } \mathrm{lbs} / \text { hour (Nm/hour) }
\end{array}
\] & Return Force
lbs (N) & Return Time
sec & Shipping Weight lbs (kg) \\
\hline \begin{tabular}{l}
MC 150 \\
MC 150H \\
MC 150H2
\end{tabular} & \[
\begin{gathered}
2-22 \\
20-200 \\
150-450
\end{gathered}
\] & \[
\begin{gathered}
(0.91-10) \\
(9-91) \\
(68-204)
\end{gathered}
\] & \[
\begin{gathered}
150(17) \\
(280)^{*}(32)^{*}
\end{gathered}
\] & 300,000 (33,890) & \[
\begin{array}{r}
0.70-1.20 \\
(3.11-5.34)
\end{array}
\] & 0.40 & . 12 (0.05) \\
\hline \begin{tabular}{l}
MC 225 \\
MC 225H \\
MC 225H2
\end{tabular} & \[
\begin{gathered}
5-55 \\
50-500 \\
400-2,000
\end{gathered}
\] & \[
\begin{gathered}
(2-25) \\
(23-227) \\
(181-907)
\end{gathered}
\] & \[
\begin{gathered}
225(25) \\
(380)^{*}(43)^{*}
\end{gathered}
\] & 400,000 (45,190) & \[
\begin{gathered}
1.00-1.50 \\
(4.45-6.67)
\end{gathered}
\] & 0.30 & 34 (0.15) \\
\hline MC 600 MC 600H MC 600H2 & \[
\begin{gathered}
20-300 \\
250-2,500 \\
880-5,000 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
(9-136) \\
(113-1,134) \\
(399-2,268)
\end{gathered}
\] & \[
\begin{gathered}
600(88) \\
(1,300)^{*}(147)^{\star}
\end{gathered}
\] & 600,000 (67,790) & \[
\begin{gathered}
1.00-2.00 \\
(4.45-8.90)
\end{gathered}
\] & 0.60 & . 57 (0.26) \\
\hline
\end{tabular}
*Hydro shock energy ratings. Consult factory.

\section*{Technical Data}

Impact velocity range: 0.26 to \(19.7 \mathrm{ft} / \mathrm{sec}(0.08\) to \(6 \mathrm{~m} / \mathrm{sec})\)
Operating temperature: \(32^{\circ}\) to \(150^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical stop: Must be provided 0.02 to 0.04 inch ( 0.5 to 1 mm ) before end of stroke.
Oil type: Silicone
Materials: Steel body with black oxide finish. Hardened stainless steel piston rod. Rolling seal EPDM (note: seal not compatible with petroleum based fluids) If unit to be used in contact with such fluids specify neoprene rolling seal. Consider the \(\mathrm{SC}^{2}\) Series as an alternative.

To prevent damage to the rolling seal in MC 150, 225 and 600 models, do not twist or turn the piston rod.
Technical data applies to standard and metric threaded models.
Maximum side load depends on application. For additional information contact The Actuator Division.
Lock nut included with each shock absorber.

Note: MC 150 to MC 600 models may be mounted into pressure chambers of pneumatic actuators.


SC \({ }^{2}\) Series Miniature Shock Absorbers provide dual performance benefits. They offer soft contact deceleration where initial impact reaction forces are very low, with the advantages of self-compensation to react to changing energy conditions, without adjustment. They have long stroke lengths, \(\mathrm{SC}^{2} 925\) with 1.58 inch ( 40 mm ) superstroke, to provide smooth deceleration and low reaction forces.

With the addition of the optional side load adapter (SC \({ }^{2} 190 \mathrm{M}, 300 \mathrm{M}\), and 650M models only), SC \(^{2}\) Series shock absorbers can handle side loads up to \(25^{\circ}\). \(\mathrm{SC}^{2}\) Series shock absorbers are fully interchangeable with the adjustable MA range.

Applications include: material handling, medium robotics, machine tools, pick and place systems, rodless cylinders and packaging equipment.

\section*{Ordering Information}


\section*{SC² Series SC 190 to SC 925}

\section*{Soft Contact and Self-Compensating}


Dimensions iN INCHES (MILLIMETERS)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & Stroke & A & B & D & E & F & G & H & J & M & T & EE & FF \\
\hline SC 190 & .63 & 4.50 & 1.06 & .16 & .46 & 3.00 & .88 & .47 & .43 & .28 & \(9 / 16-18\) UNF & \(1 / 2\) & .50 \\
SC 190M & \((16.0)\) & \((114.3)\) & \((26.9)\) & \((4.1)\) & \((11.7)\) & \((76.2)\) & \((22.4)\) & \((11.9)\) & \((11.0)\) & \((7.1)\) & M14x1.5 & \((12.0)\) & \((12.7)\) \\
\hline SC 300 & .75 & 4.62 & 1.18 & .19 & .66 & 3.09 & 1.00 & .66 & .43 & .28 & \(3 / 4-16\) UNF & \(11 / 16\) & .50 \\
SC 300M & \((19.1)\) & \((117.5)\) & \((30.0)\) & \((4.8)\) & \((16.8)\) & \((78.5)\) & \((25.4)\) & \((16.8)\) & \((11.0)\) & \((7.1)\) & M20x1.5 & \((18.0)\) & \((12.7)\) \\
\hline SC 650 & 1.00 & 5.62 & 1.43 & .25 & .87 & 3.83 & 1.25 & .90 & .43 & .28 & \(1-12\) UNF & \(7 / 8\) & .50 \\
SC 650M & \((25.4)\) & \((142.6)\) & \((36.3)\) & \((6.3)\) & \((22.1)\) & \((97.3)\) & \((31.8)\) & \((22.9)\) & \((11.0)\) & \((7.1)\) & M25x1.5 & \((23.0)\) & \((12.7)\) \\
\hline SC 925 & 1.58 & 7.44 & 2.01 & .25 & .87 & 5.1 & 1.82 & .90 & .43 & .28 & \(1-12\) UNF & \(7 / 8\) & .50 \\
SC 925M & \((40.0)\) & \((189.1)\) & \((51.1)\) & \((6.3)\) & \((22.1)\) & \((129.5)\) & \((46.4)\) & \((22.9)\) & \((11.0)\) & \((7.1)\) & M25x1.5 & \((23.0)\) & \((12.7)\) \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & Soft Contact
We
Effective Weight
lbs (kg) & Self-Compensating We Effective Weight lbs (kg) & \begin{tabular}{l}
E3 \\
Energy per Cycle in lbs (Nm)
\end{tabular} & \begin{tabular}{l}
E4 \\
Energy per Hour in lbs/hour ( \(\mathrm{Nm} /\) hour)
\end{tabular} & \[
\begin{aligned}
& \text { Return Force } \\
& \text { lbs (N) }
\end{aligned}
\] & Return Time
sec & Shipping Weight lbs (kg) \\
\hline \[
\begin{aligned}
& \hline \text { SC 190-1 } \\
& \text { SC 190-2 } \\
& \text { SC 190-3 } \\
& \text { SC 190-4 }
\end{aligned}
\] & \[
\begin{gathered}
5-13(2-6) \\
12-38(5-18) \\
30-90(14-41) \\
75-200(34-91)
\end{gathered}
\] & \[
\begin{gathered}
3-15(1.4-7) \\
8-40(4-18) \\
20-100(9-45) \\
50-225(23-102)
\end{gathered}
\] & \[
\begin{array}{r}
225(25) \\
* 300(33)
\end{array}
\] & \[
\begin{aligned}
& 300,000 \\
& (34,000)
\end{aligned}
\] & \[
\begin{gathered}
0.90-1.90 \\
(4.00-8.95)
\end{gathered}
\] & 0.25 & \[
\begin{gathered}
0.18 \\
(0.08)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { SC } 300-1 \\
& \text { SC } 300-2 \\
& \text { SC } 300-3 \\
& \text { SC } 300-4
\end{aligned}
\] & \[
\begin{gathered}
5-15(2-7) \\
15-50(7-23) \\
50-150(23-68) \\
150-400(68-181)
\end{gathered}
\] & \[
\begin{gathered}
3-18(1.4-8) \\
10-60(5-27) \\
30-180(14-82) \\
70-450(32-204)
\end{gathered}
\] & \[
\begin{array}{r}
300(33) \\
* 500(56)
\end{array}
\] & \[
\begin{aligned}
& 400,000 \\
& (45,000)
\end{aligned}
\] & \[
\begin{gathered}
1.05-2.15 \\
(4.67-9.56)
\end{gathered}
\] & 0.10 & \[
\begin{gathered}
0.25 \\
(0.11)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { SC 650-1 } \\
& \text { SC 650-2 } \\
& \text { SC } 650-3 \\
& \text { SC } 650-4
\end{aligned}
\] & \[
\begin{gathered}
24-80(11-36) \\
75-250(34-113) \\
240-800(109-363) \\
800-2400(363-1089) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
17-100(8-45) \\
50-300(23-136) \\
150-900(68-408) \\
450-260(204-1180) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
650(73) \\
* 1,000(113)
\end{array}
\] & \[
\begin{aligned}
& 600,000 \\
& (68,000)
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
2.40-6.87 \\
(10.67-30.55)
\end{gathered}\right.
\] & 0.20 & \[
\begin{gathered}
0.67 \\
(0.31)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { SC 925-1 } \\
& \text { SC 925-2 } \\
& \text { SC 925-3 } \\
& \text { SC } 925-4
\end{aligned}
\] & \[
\begin{array}{r|}
50-160(22-72) \\
130-460(59-208) \\
400-1,350(181-612) \\
1200-4300(544-1952)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 30-200(14-90) \\
90-600(40-272) \\
250-1,600(113-726) \\
750-4600(340-2088) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 975(110) \\
* 1,700(192)
\end{array}
\] & \[
\begin{aligned}
& 800,000 \\
& (90,000)
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
2.40-7.40 \\
(10.67-30.55)
\end{gathered}\right.
\] & 0.40 & \[
\begin{gathered}
0.87 \\
(0.39)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Technical Data}

Impact velocity range: 0.5 to \(12 \mathrm{ft} / \mathrm{sec}(0.15\) to \(3.66 \mathrm{~m} / \mathrm{sec}\) )
Operating temperature: \(32^{\circ}\) to \(150^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(66^{\circ} \mathrm{C}\) )
Mechanical stop: Integral mechanical stop built into front of units.
Oil type: \#5
Materials: Steel body with black oxide finish. Hardened stainless steel piston rod.

Technical data applies to standard and metric threaded models.
Maximum side load depends on application. For additional information contact The Actuator Division.
Lock nut included with each shock absorber.

SC \({ }^{2}\) Heavyweight Series SC 300 to SC 650

\section*{Soft Contact and Self-Compensating}


SC \(^{2} 300\) and SC \(^{2} 650\) Heavyweight Series Shock Absorbers deliver up to \(950 \%\) of the effective weight capacity and \(280 \%\) of the energy absorption capability of standard models. These durable units are ideal for decelerating heavy weights moving at low velocities. The Heavyweight Series design combines the piston and the inner tube into a single component, the piston tube. It acts as both the pressure creating and pressure controlling device.
SC \({ }^{2} 300\) and SC \({ }^{2} 650\) Heavyweight II Series Shock Absorbers offer effective weight ranges and dramatic increases in energy absorption capability, for handling a wider range of applications.
These revolutionary shock absorbers provide dual performance benefits. They offer soft contact deceleration where initial impact reaction forces are very low with the advantages of selfcompensation to cope with changing input energy conditions without adjustment.

Applications include: rotary actuators, rodless cylinders, conveyors, pick and place operations, slides as well as operations turning heavy weights at slow speeds.

\section*{Ordering Information}


\section*{SC \({ }^{2}\) Series SC 190 to SC 925}

\section*{Soft Contact and Self-Compensating}



Heavyweight Series Dimensions IN INCHES (MILLIMETERS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & Stroke & A & B & D & E & F & G & H & J & M & T & EE & FF \\
\hline SC 300-5 SC 300-6 SC 300-7 SC 300-8 SC 300-9 SC 300M-5 SC 300M-6 SC 300M-7 SC 300M-8 SC 300M-9 & \[
\begin{gathered}
.59 \\
(15.0)
\end{gathered}
\] & \[
\begin{gathered}
4.15 \\
(105.4)
\end{gathered}
\] & \[
\begin{gathered}
1.02 \\
(25.9)
\end{gathered}
\] & \[
\begin{gathered}
.25 \\
(6.4)
\end{gathered}
\] & \[
\begin{gathered}
.66 \\
(16.8)
\end{gathered}
\] & \[
\begin{gathered}
2.78 \\
(70.6)
\end{gathered}
\] & \[
\begin{gathered}
.84 \\
(21.3)
\end{gathered}
\] & \[
\begin{gathered}
.67 \\
(17.0)
\end{gathered}
\] & \[
\begin{gathered}
.43 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
.28 \\
(7.1)
\end{gathered}
\] & \[
\begin{gathered}
3 / 4-16 \text { UNF } \\
\text { M20×1.5 }
\end{gathered}
\] & \[
\begin{gathered}
11 / 16 \\
(17.5)
\end{gathered}
\] & \[
\begin{gathered}
.50 \\
(12.7)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { SC 650-5 } \\
& \text { SC 650-6 } \\
& \text { SC } 650-7 \\
& \text { SC } 650-8 \\
& \text { SC } 650-9 \\
& \text { SC } 650 M-5 \\
& \text { SC } 650 M-6 \\
& \text { SC } 650 M-7 \\
& \text { SC } 650 M-8 \\
& \text { SC } 650 M-9
\end{aligned}
\] & \[
\begin{gathered}
.91 \\
(23.1)
\end{gathered}
\] & \[
\begin{gathered}
5.51 \\
(140.0)
\end{gathered}
\] & \[
\begin{gathered}
1.33 \\
(33.8)
\end{gathered}
\] & \[
\begin{gathered}
.38 \\
(9.6)
\end{gathered}
\] & \[
\begin{gathered}
.87 \\
(22.1)
\end{gathered}
\] & \[
\begin{gathered}
3.83 \\
(97.3)
\end{gathered}
\] & \[
\begin{gathered}
1.16 \\
(29.5)
\end{gathered}
\] & \[
\begin{gathered}
.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{gathered}
.43 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
.28 \\
(7.1)
\end{gathered}
\] & \[
\begin{aligned}
& 1-12 \text { UNF } \\
& \text { M } 25 \times 1.5
\end{aligned}
\] & \[
\begin{gathered}
7 / 8 \\
(22.2)
\end{gathered}
\] & \[
\begin{array}{|c}
.50 \\
(12.7)
\end{array}
\] \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & ```
    Soft Contact
        We
            Effective Weight
        lbs (kg)
``` & Self-Compensating We Effective Weight lbs (kg) & \begin{tabular}{l}
E3 \\
Energy per Cycle in lbs (Nm)
\end{tabular} & \begin{tabular}{l}
E4 \\
Energy per Hour in lbs/hour (Nm/hour)
\end{tabular} & Return Force lbs (N) & Return Time sec & Shipping Weight lbs (kg) \\
\hline \[
\begin{aligned}
& \hline \text { SC 300-5 } \\
& \text { SC 300-6 } \\
& \text { SC } 300-7
\end{aligned}
\] & \[
\begin{gathered}
38-90(17-41) \\
115-270(52-123) \\
300-360(136-163)
\end{gathered}
\] & \[
\begin{gathered}
25-100(11-45) \\
75-300(34-136) \\
200-400(91-181)
\end{gathered}
\] & \[
\begin{aligned}
& 650 \\
& (73)
\end{aligned}
\] & \[
\begin{aligned}
& 400,000 \\
& (45,194)
\end{aligned}
\] & \[
\begin{gathered}
1.70-4.00 \\
(7.56-17.79)
\end{gathered}
\] & 0.20 & \[
\begin{gathered}
0.33 \\
(0.15)
\end{gathered}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { SC 300-8 } \\
\text { SC } 300-9 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 450-1,350(204-612) \\
1,050-3,900(476-1,769) \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline 300-1,500(136-680) \\
700-4,300(318-1,950)
\end{gathered}
\] & \[
\begin{aligned}
& \hline 620 \\
& (70) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 400,000 \\
& (45,194) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
1.70-4.00 \\
(7.56-17.79) \\
\hline
\end{gathered}
\] & 0.20 & \[
\begin{gathered}
0.33 \\
(0.15) \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { SC 650-5 } \\
& \text { SC 650-6 } \\
& \text { SC } 650-7
\end{aligned}
\] & \[
\begin{gathered}
75-225(34-102) \\
300-720(136-327) \\
1,050-2,150(476-975)
\end{gathered}
\] & \[
\begin{gathered}
50-250(23-113) \\
200-800(91-363) \\
700-2,400(317-1,089)
\end{gathered}
\] & \[
\begin{aligned}
& 1,860 \\
& (210)
\end{aligned}
\] & \[
\begin{aligned}
& 600,000 \\
& (67,791)
\end{aligned}
\] & \[
\begin{gathered}
2.40-7.30 \\
(10.68-32.99)
\end{gathered}
\] & 0.30 & \[
\begin{gathered}
0.76 \\
(0.34)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { SC 650-8 } \\
& \text { SC 650-9 }
\end{aligned}
\] & \[
\begin{gathered}
2,500-5,200 \\
(1,134-2,359) \\
6,000-12,500 \\
(2,722-5,670)
\end{gathered}
\] & \[
\begin{gathered}
1,700-5,800 \\
(771-2,631) \\
4,000-14,000 \\
(1,814-6,350)
\end{gathered}
\] & \[
\begin{aligned}
& 1,860 \\
& (210)
\end{aligned}
\] & \[
\begin{aligned}
& 600,000 \\
& (67,791)
\end{aligned}
\] & \[
\begin{gathered}
2.40-7.30 \\
(10.68-32.47)
\end{gathered}
\] & 0.30 & \[
\begin{gathered}
0.76 \\
(0.34)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Technical Data}

Impact velocity range: . 30 to \(12.0 \mathrm{ft} / \mathrm{sec}\)
(0.09 to \(3.66 \mathrm{~m} / \mathrm{sec}\))
Operating temperature: \(32^{\circ}\) to \(150^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical stop: Integral mechanical stop built into front of units.
Oil type: \#5

Materials: Steel body with black oxide finish. Hardened stainless steel piston rod.
Technical data applies to standard and metric threaded models.
Maximum side load depends on application. For additional information contact The Actuator Division.
Lock nut included with each shock absorber.

Miniature Shock Absorbers MA \(\mathbf{3 5}\) to MA 900
Adjustable

MA Series miniature shock absorbers offer a compact design with true linear deceleration, and are adjustable over a wide range of conditions. If your preference is a fully adjustable shock absorber rather than a self-compensating model on your application, then the MA Series provides a directly interchangeable alternative.
These adjustable models feature long stroke lengths, MA 900 with 1.58 inch (40 mm) superstroke, to provide smooth deceleration and low reaction forces. The MA 150 incorporates the proven rolling diaphragm seal (used on the MC 150 to MC 600 range) and shares all the advantages of that technology.
Applications include: material handling, medium robotics, pick and place systems, machine tool and packaging equipment.

\section*{Ordering Information}

Miniature Shock Absorbers MA \(\mathbf{3 5}\) to MA 900
Adjustable

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{Dimensions IN INCHES (MILLIMETERS)} \\
\hline Model & Stroke & A & B & D & E & F & G & H & J & M & T & EE & FF \\
\hline MA 35 MA 35M & \[
\begin{gathered}
.40 \\
(10.1) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3.31 \\
(84.1)
\end{gathered}
\] & \[
\begin{gathered}
.72 \\
(18.3)
\end{gathered}
\] & \[
\begin{gathered}
\hline .13 \\
(3.3) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
.42 \\
(10.6) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2.41 \\
(61.2)
\end{gathered}
\] & N/A & \[
\begin{gathered}
\hline .30 \\
(7.6) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline .32 \\
(8.0) \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.18 \\
(4.6) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { 1/2-20 UNF } \\
& \text { M12x1 }
\end{aligned}
\] & N/A & N/A \\
\hline MA 150 MA 150M MA 150ME & \[
\begin{gathered}
.49 \\
(12.4)
\end{gathered}
\] & \[
\begin{gathered}
3.64 \\
(92.5)
\end{gathered}
\] & \[
\begin{gathered}
.92 \\
(23.4)
\end{gathered}
\] & \[
\begin{gathered}
.19 \\
(4.8)
\end{gathered}
\] & \[
\stackrel{.46}{(11.6)}
\] & \[
\begin{gathered}
2.44 \\
(62.0)
\end{gathered}
\] & \[
\begin{gathered}
.69 \\
(17.5)
\end{gathered}
\] & \[
\begin{gathered}
.47 \\
(11.9)
\end{gathered}
\] & \[
\stackrel{.43}{(11.0)}
\] & \[
\begin{gathered}
.28 \\
(7.1)
\end{gathered}
\] & \[
\begin{gathered}
9 / 16-18 \text { UNF } \\
\text { M14x1.5 } \\
\text { M14x1 }
\end{gathered}
\] & \[
\stackrel{.49}{(12.7)}
\] & \[
\begin{gathered}
.50 \\
(12.7)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { MA } 225 \\
& \text { MA 225M }
\end{aligned}
\] & \[
\begin{gathered}
.75 \\
(19.1) \\
\hline
\end{gathered}
\] & \[
\begin{array}{c|}
\hline 4.67 \\
(118.6)
\end{array}
\] & \[
\begin{gathered}
\hline 1.18 \\
(30.0)
\end{gathered}
\] & \[
\begin{gathered}
\hline .19 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
.66 \\
(16.8)
\end{gathered}
\] & \[
\begin{gathered}
2.94 \\
(74.7)
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
(25.3)
\end{gathered}
\] & \[
\begin{gathered}
.66 \\
(16.8)
\end{gathered}
\] & \[
\begin{gathered}
.43 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
.55 \\
(14.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 3/4-16 UNF } \\
\text { M20x1.5 }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 11 / 16 \\
& (18.0) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
.50 \\
(12.7)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { MA } 600 \\
& \text { MA 600M }
\end{aligned}
\] & \[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\] & \[
\begin{gathered}
5.62 \\
(142.6)
\end{gathered}
\] & \[
\begin{gathered}
1.43 \\
(36.3)
\end{gathered}
\] & \[
\begin{gathered}
\hline .25 \\
(6.3)
\end{gathered}
\] & \[
\begin{gathered}
.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{gathered}
3.54 \\
(90.0)
\end{gathered}
\] & \[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\] & \[
\begin{gathered}
.90 \\
(22.9)
\end{gathered}
\] & \[
\begin{gathered}
.43 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
.65 \\
(16.5)
\end{gathered}
\] & \[
\begin{aligned}
& \hline 1-12 \text { UNF } \\
& \text { M25x1.5 }
\end{aligned}
\] & \[
\begin{gathered}
7 / 8 \\
(23.0)
\end{gathered}
\] & \[
\begin{gathered}
.50 \\
(12.7)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { MA 900 } \\
& \text { MA 900M }
\end{aligned}
\] & \[
\begin{gathered}
1.58 \\
(40.0)
\end{gathered}
\] & \[
\begin{array}{c|}
\hline 7.44 \\
(189.0)
\end{array}
\] & \[
\begin{gathered}
2.01 \\
(51.1)
\end{gathered}
\] & \[
\begin{gathered}
.25 \\
(6.3)
\end{gathered}
\] & \[
\begin{gathered}
.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{gathered}
4.78 \\
(121.4)
\end{gathered}
\] & \[
\begin{gathered}
1.85 \\
(46.4)
\end{gathered}
\] & \[
\begin{gathered}
.90 \\
(22.9)
\end{gathered}
\] & \[
\begin{gathered}
.43 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
65 \\
(16.5)
\end{gathered}
\] & \[
\begin{aligned}
& \text { 1-12 UNF } \\
& \text { M } 25 \times 1.5
\end{aligned}
\] & \[
\begin{gathered}
\hline 7 / 8 \\
(23.0)
\end{gathered}
\] & \[
\begin{gathered}
.50 \\
(12.7)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & \begin{tabular}{c}
We \\
Effective Weight \\
lbs (kg)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{E}_{\mathbf{3}}\) \\
Energy per Cycle \\
in Ibs (Nm)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{E}_{4}\) \\
En Ibs/hour (Nm/hour)
\end{tabular} & \begin{tabular}{c}
Return Force \\
Ibs \\
\((\mathbf{N})\)
\end{tabular} & \begin{tabular}{c}
Return Time \\
sec
\end{tabular} & \begin{tabular}{c}
Shipping Weight \\
Ibs (kg)
\end{tabular} \\
\hline MA 35 & \(13-125(6-57)\) & \(35(4)\) & \(53,000 \quad(5,988)\) & \(1.20-2.60(5.33-11.56)\) & .17 & \(.10(0.04)\) \\
\hline MA 150 & \(2-200(0.91-91)\) & \(150(17)\) & \(300,000 \quad(33,890)\) & \(0.70-1.20(3.12-5.34)\) & .40 & \(.12(0.05)\) \\
\hline MA 225 & \(5-500(2-227)\) & \(225(25)\) & \(400,000 \quad(45,190)\) & \(1.05-2.15(4.67-9.56)\) & .10 & \(.28(0.13)\) \\
\hline MA 600 & \(20-3,000(9-1,361)\) & \(600(68)\) & \(600,000 \quad(67,790)\) & \(2.40-6.87(10.67-30.56)\) & .20 & \(.67(0.30)\) \\
\hline MA 900 & \(30-4,500(14-2,041)\) & \(900(102)\) & \(800,000 \quad(90,380)\) & \(2.40-7.40(10.67-32.92)\) & .40 & \(.87(0.39)\) \\
\hline
\end{tabular}

\section*{Technical Data}

Impact velocity range
MA 35: \(3.3 \mathrm{ft} / \mathrm{sec}(1.0 \mathrm{~m} / \mathrm{sec})\)
MA 150, 225, 600, 900: 0.5 to \(12 \mathrm{ft} / \mathrm{sec}(0.15\) to \(3.66 \mathrm{~m} / \mathrm{sec}\))
Operating Temperature: \(32^{\circ}\) to \(150^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical Stop
MA 35: Integral
MA 150: Must be provided 0.02 to 0.04 inch (0.5 to 1 mm) before end of each stroke.
MA 225, 600, 900: Integral mechanical stop built into front of units.
Oil type
MA 35: \#5
MA 150: Silicone
MA 225, 600, 900: ATF

Materials: Steel body with black oxide finish. Hardened stainless steel piston rod.
Adjustment: On models MA 35 up to MA 150: by turning the adjustment screw at rear. On the larger sizes: by turning the adjustment knob against the scale marked 0 to 9 . After installation, cycle the machine a few times and turn the adjustment knob until optimum deceleration is achieved (i.e. smooth deceleration throughout stroke).

Hard impact at start of stroke-turn adjuster toward 9.
Hard set-down at end of stroke-turn adjuster toward 0.
Technical data applies to standard and metric threaded models.
Maximum side load depends on application. For additional information contact The Actuator Division.
Note: MA 150 models may be mounted into pressure chambers of pneumatic actuators.
Lock nut included with each shock absorber.
MA 35 and MA 150 models can be utilized as velocity controls.

\section*{Magnum Series MC 33 to MC 64 \\ Self-Compensating}

Parker presents the ultimate in industrial shock absorber design...the Magnum Series. These versatile performers offer you the capability to mount shock absorbers that contain the highest energy capacity ratings in the industry. Up to \(150 \%\) of the energy per cycle of previous models in the same package size, means increased safety factors in a wider range of applications.
Up to \(390 \%\) of the effective weight capacity of previous models, may allow a smaller, lower priced shock absorber to be mounted, to meet your application requirements.
All Magnum Series shock absorbers are fully threaded for ease of installation. Incorporation of high strength materials along with an integral stop collar translates to extended shock absorber life and cost savings for you.

Applications include: automotive manufacturing and production equipment, large robotics, heavy conveyors, packaging and glass bottling equipment, rotary actuators, theme park rides, and lumber industry equipment.

\section*{Technical Data}

Impact velocity range:
MC Models: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec}\))
Operating Temperature: \(10^{\circ}\) to \(150^{\circ} \mathrm{F}\left(-12^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Oil type: ATF
Materials: Steel with black oxide finish. Piston rod high tensile steel, hardened and chrome plated. Rod end button hardened steel with black oxide finish. Zinc plated return spring. For optimum heat dissipation, do not paint shock absorber.

Technical data applies to standard and metric threaded models.
Lock nut included with each shock absorber.

\section*{Magnum Series MA and ML 33 to 64 \\ Adjustable}

\section*{Magnum Series adjustable shock absorbers} feature the latest seal technology, a hardened piston ring, pressure chamber and outer body for increased operating life. Additionally, these rugged units offer the unique feature of front or rear adjustment along with a fully threaded outer body for ease of installation.
Magnum Series adjustable shock absorbers are directly interchangeable with obsolete primary series and competitor models.

Along with the self-compensating models, the adjustable range offers unprecedented increases in energy and effective weight capacity.
Applications are the same as self-compensating models.

\section*{Technical Data}

Impact velocity range
MA Models: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec})\)
ML Models: 0.06 to \(1.5 \mathrm{ft} / \mathrm{sec}\) (0.02 to \(0.46 \mathrm{~m} / \mathrm{sec}\))
Operating Temperature: \(10^{\circ}\) to \(150^{\circ} \mathrm{F}\left(-12^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Oil type: ATF
Materials: Steel with black oxide finish. Piston rod high tensile steel, hardened and chrome plated. Rod end button hardened steel with black oxide finish. Zinc plated return spring. For optimum heat dissipation, do not paint shock absorber.

Adjustment: After installation of the Magnum Series shock absorber, cycle the machine a number of times. Turn the front stop collar or the rear adjuster against the scale marked 0 to 9 until optimum deceleration is achieved (i.e. smooth deceleration throughout the stroke).

Hard impact at start of stroke-turn adjuster toward 9.
Hard set-down at end of stroke-turn adjuster toward 0.
Technical data applies to standard and metric threaded models.
The Actuator Division recommends that side load not exceed \(5^{\circ}\). Maximum side load depends on application. For additional information consult The Actuator Division.

Lock nut included with each shock absorber.

\section*{Magnum Series MC/MA/ML 33 and 36}

Self-Compensating and Adjustable

\section*{Primary Mount}

Adjuster (MA and ML only)

Clevis Mount

Side-Foot Mount

\section*{33 Model Dimensions in INCHES (MILLIMETERS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & Stroke & A & B & D & G & H & I* & J & K & T & W & C1 & C2 & C3 & C4 \\
\hline MC, MA, ML 3325 & \[
\begin{gathered}
0.91 \\
(23.1)
\end{gathered}
\] & \[
\begin{gathered}
5.44 \\
(138.1)
\end{gathered}
\] & \[
\begin{array}{r}
2.19 \\
(55.6) \\
\hline
\end{array}
\] & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0.375 \\
& (9.5)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
0.99 \\
(25.1)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 8 \\
\text { NPT } \\
\text { MALE }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
0.75 \\
(19.1)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
1.15 \\
(29.2)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1-1 / 4-12 \\
& \text { M33x1.5 }
\end{aligned}
\]} & \[
\begin{gathered}
1.50 \\
(38.10)
\end{gathered}
\] & \multirow[b]{2}{*}{\[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
0.76 \\
(19.3)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 2505 \\
& (6.40)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0.32 \\
& (8.1)
\end{aligned}
\]} \\
\hline MC, MA, ML 3350 & \[
\begin{gathered}
1.91 \\
(48.5)
\end{gathered}
\] & \[
\begin{aligned}
& \hline 7.44 \\
& (189)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 3.19 \\
& (81)
\end{aligned}
\] & & & & & & & & \[
\begin{gathered}
\hline 1.56 \\
(39.71)
\end{gathered}
\] & & & & \\
\hline Model & C5 & C6 & C7 & C8 & C9 & C10 & C11 & C12 & C13 & C14 & F1 & F2 & F3 & F4 & F5 \\
\hline MC, MA, ML 3325 & \[
\begin{aligned}
& \hline 6.58 \\
& (167) \\
& \hline
\end{aligned}
\] & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|c}
0.48 \\
(12.2)
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{|c}
0.50 \\
(12.7)
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& .2505 \\
& (6.4)
\end{aligned}
\]} & \[
\begin{array}{|c|}
\hline 2.64 \\
(67.1) \\
\hline
\end{array}
\] & \[
\begin{gathered}
1.36 \\
(34.5)
\end{gathered}
\] & \multirow[b]{2}{*}{\[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
0.75 \\
(19.1)
\end{gathered}
\]} & \multirow[b]{2}{*}{N/A} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\]} & \[
\begin{array}{|c|}
\hline 3.75 \\
(95.3)
\end{array}
\] & \[
\begin{gathered}
\hline 1.94 \\
(49.3)
\end{gathered}
\] & \multirow[b]{2}{*}{\[
\begin{gathered}
0.87 \\
(22.1)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\]} \\
\hline MC, MA, ML 3350 & \[
\begin{gathered}
\hline 8.58 \\
(217.8)
\end{gathered}
\] & & & & & \[
\begin{array}{|c}
\hline 3.64 \\
(92.5) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.36 \\
& (60)
\end{aligned}
\] & & & & & \[
\begin{gathered}
\hline 4.75 \\
(120.7)
\end{gathered}
\] & \[
\begin{array}{r}
2.94 \\
(74.7) \\
\hline
\end{array}
\] & & \\
\hline Model & F6 & F7 & F8 & F9 & \multicolumn{11}{|c|}{* For models MAA and MAS 33 the 1/8-27 male fitting is shipped with} \\
\hline \begin{tabular}{l}
MC, MA, ML 3325 \\
MC, MA, ML 3350
\end{tabular} & \[
\begin{gathered}
2.75 \\
(69.9)
\end{gathered}
\] & \[
\begin{aligned}
& 2.37 \\
& (60)
\end{aligned}
\] & \[
\begin{array}{|c}
0.50 \\
(12.7)
\end{array}
\] & \[
\begin{aligned}
& 0.23 \\
& (5.9)
\end{aligned}
\] & \multicolumn{11}{|c|}{Note: For models MAA, MLA and MCA indicate \(P\) for the side port option when ordering clevis mount.} \\
\hline
\end{tabular}

Note: M 36 and 1-3/8 thread is optional.
Note: A side port can be adapted to Magnum Series 33 MAA, MLA and MCA models and is a special adder item. A side port adapter ring is molded onto the outer tube and increases the overall diameter by 0.25 inches (6.3 mm) in the area of the ring. The side port centerline is located 0.81 inches \((20.7 \mathrm{~mm})\) from the front of the outer tube. Add (-P) to the model ordering code if a side port is desired, see page 34.
Note: Poly pad available on 33 models only - part no. 250-0011.
Lock nut included with each shock absorber. See page 51 for dimensions.
Note: All dimensions and tolerance values listed in this catalog are nominal and subject to change without prior notice.

Catalog AU08-1022-1/NA Magnum Series

Industrial Shock Absorbers Linear Decelerators

Magnum Series MC/MA/ML 33 and 36
Self-Compensating and Adjustable
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{36 Model Dimensions IN INCHES (MILLIMETERS)} \\
\hline Model & Stroke & A & B & D & G & H & I* & J & K & T & w & C1 & C2 & C3 & C4 \\
\hline MC, MA, ML 3625 & \[
\begin{gathered}
0.91 \\
(23.1) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 5.44 \\
(138.1) \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 2.19 \\
(55.6) \\
\hline
\end{array}
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.375 \\
& (9.5)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
0.99 \\
(25.1)
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1 / 8 \\
\text { NPT } \\
\text { MALE }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
0.75 \\
(19.1)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1.15 \\
(29.2)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1-3 / 8-12 \\
& \text { M36x1.5 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1.75 \\
(44.5)
\end{gathered}
\]} & \multirow[t]{2}{*}{N/A} & \multirow[t]{2}{*}{N/A} & \multirow[t]{2}{*}{N/A} & \multirow[t]{2}{*}{N/A} \\
\hline MC, MA, ML 3650 & \[
\begin{gathered}
1.91 \\
(48.5)
\end{gathered}
\] & \[
\begin{aligned}
& \hline 7.44 \\
& (189)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 3.19 \\
& (81)
\end{aligned}
\] & & & & & & & & & & & & \\
\hline Model & C5 & C6 & C7 & C8 & C9 & C10 & C11 & C12 & C13 & C14 & F1 & F2 & F3 & F4 & F5 \\
\hline \[
\begin{aligned}
& \text { MC, MA, ML } 3625 \\
& \text { MC, MA, ML } 3650
\end{aligned}
\] & N/A \\
\hline Model & F6 & F7 & F8 & F9 & & & & & & & & & & & \\
\hline \begin{tabular}{l}
MC, MA, ML 3625 \\
MC, MA, ML 3650
\end{tabular} & N/A & N/A & N/A & N/A & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Specifications...MC Series, Self-Compensating}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { We } \\
\text { Effective Weight } \\
\text { lbs (kg) } \\
\hline
\end{gathered}
\]}} & \multirow[b]{2}{*}{E3
Energy per
Cycle
in lbs \((\mathrm{Nm})\)} & \multicolumn{3}{|l|}{Energy per Hour in Ibs/hour (Nm/hour) E4} & \multirow[b]{2}{*}{Return Force lbs (N)} & \multirow[b]{2}{*}{Return Time sec} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & Internal Accumulator (Self-Contained) & Extenal Accumulator (A/O Tank) & External Accumulator (Re-circulating) & & & \\
\hline \begin{tabular}{l}
MC 3325-1 \\
MC 3325-2 \\
MC 3325-3 \\
MC 3325-4
\end{tabular} & \[
\begin{gathered}
\hline 20-80 \\
68-272 \\
230-920 \\
780-3,120
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline(9-36) \\
(31-123) \\
(104-417) \\
(354-1,415)
\end{array}
\] & \[
\begin{aligned}
& 1,350 \\
& (153)
\end{aligned}
\] & \[
\begin{array}{r}
670,000 \\
(75,000)
\end{array}
\] & \[
\begin{aligned}
& 1,100,000 \\
& (124,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,500,000 \\
& (169,000)
\end{aligned}
\] & \[
\begin{gathered}
10.3-19.8 \\
(46-88)
\end{gathered}
\] & 0.03 & \[
\begin{gathered}
1.00 \\
(0.45)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { MC } 3350-1 \\
& \text { MC } 3350-2 \\
& \text { MC } 3350-3 \\
& \text { MC } 3350-4
\end{aligned}
\] & \begin{tabular}{|c|}
\hline \(40-160\) \\
\(136-544\) \\
\(460-1,840\) \\
\(1,560-6,240\)
\end{tabular} & \((18-73)\)
\((62-247)\)
\((209-835)\)
\((708-2,830)\) & \[
\begin{aligned}
& 2,700 \\
& (305)
\end{aligned}
\] & \[
\begin{aligned}
& 760,000 \\
& (85,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,200,000 \\
& (135,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,600,000 \\
& (180,000)
\end{aligned}
\] & \[
\begin{aligned}
& 9.9-30.3 \\
& (44-135)
\end{aligned}
\] & 0.06 & \[
\begin{gathered}
1.2 \\
(0.54)
\end{gathered}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { MC } 3625-1 \\
\text { MC } 3625-2 \\
\text { MC } 3625-3 \\
\text { MC } 3625-4 \\
\hline
\end{array}
\] & \(20-80\)
\(68-272\)
\(230-920\)
\(780-3,120\) & \((9-36)\)
\((31-123)\)
\((104-417)\)
\((354-1,415)\) & \[
\begin{aligned}
& 1,350 \\
& (153)
\end{aligned}
\] & \[
\begin{array}{r}
670,000 \\
(75,000)
\end{array}
\] & \[
\begin{aligned}
& 1,100,000 \\
& (124,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,500,000 \\
& (169,000)
\end{aligned}
\] & \[
\begin{gathered}
10.3-19.8 \\
(46-88)
\end{gathered}
\] & 0.03 & \[
\begin{gathered}
1.23 \\
(0.56)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
MC 3650-1 \\
MC 3650-2 \\
MC 3650-3 \\
MC 3650-4
\end{tabular} & \[
\begin{gathered}
\hline 40-160 \\
136-544 \\
460-1,840 \\
1,560-6,240 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline(18-73) \\
(62-247) \\
(209-835) \\
(708-2,830) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2,700 \\
& (305)
\end{aligned}
\] & \[
\begin{aligned}
& 760,000 \\
& (85,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,200,000 \\
& (135,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,600,000 \\
& (180,000)
\end{aligned}
\] & \[
\begin{aligned}
& 9.9-30.3 \\
& (44-135)
\end{aligned}
\] & 0.06 & \[
\begin{gathered}
1.51 \\
(0.68)
\end{gathered}
\] \\
\hline
\end{tabular}

Impact velocity range: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15 \mathrm{to} 5 \mathrm{~m} / \mathrm{sec}\))

\section*{Specifications...MA Series, Adjustable}
\(\left.\begin{array}{|l|c|c|c|c|c|c|c|c|c|}\hline \text { MA 3325 } & 20-3,800 & (9-1,724) & \begin{array}{c}1,500 \\ (169)\end{array} & \begin{array}{c}670,000 \\ (75,000)\end{array} & \begin{array}{l}1,100,000 \\ (124,000)\end{array} & \begin{array}{c}1,500,000 \\ (169,000)\end{array} & \begin{array}{c}10.3-19.8 \\ (46-88)\end{array} & 0.03 & \begin{array}{c}1.0 \\ (0.45)\end{array} \\ \hline \text { MA 3350 } & 28-5,400 & (13-2,449) & \begin{array}{l}3,000 \\ (339)\end{array} & \begin{array}{c}760,000 \\ (85,000)\end{array} & \begin{array}{l}1,200,000 \\ (135,000)\end{array} & \begin{array}{l}1,600,000 \\ (180,000)\end{array} & \begin{array}{c}9.9-30.3 \\ (44-135)\end{array} & 0.06 & \begin{array}{c}1.2 \\ (0.54)\end{array} \\ \hline \text { MA 3625 } & 20-3,800 & (9-1,724) & \begin{array}{l}1,500 \\ (169)\end{array} & \begin{array}{c}670,000 \\ (75,000)\end{array} & \begin{array}{l}1,100,000 \\ (124,000)\end{array} & \begin{array}{r}1,500,000 \\ (169,000)\end{array} & \begin{array}{c}10.3-19.8 \\ (46-88)\end{array} & 0.03 & 1.23 \\ (0.56)\end{array}\right]\)

Impact velocity range: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec}\))
Specifications...ML Series, Low Velocity Adjustable
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ML 3325 & & & \[
\begin{aligned}
& 1,500 \\
& (169)
\end{aligned}
\] & \[
\begin{aligned}
& 670,000 \\
& (75,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,100,000 \\
& (124,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,500,000 \\
& (169,000)
\end{aligned}
\] & \[
\begin{gathered}
10.3-19.8 \\
(46-88)
\end{gathered}
\] & 0.03 & \[
\begin{gathered}
1.0 \\
(0.45)
\end{gathered}
\] \\
\hline ML 3350 & & & \[
\begin{aligned}
& 3,000 \\
& (339)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 760,000 \\
& (85,000) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,200,000 \\
& (135,000) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,600,000 \\
& (180,000) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 9.9-30.3 \\
& (44-135) \\
& \hline
\end{aligned}
\] & 0.06 & \[
\begin{gathered}
1.2 \\
(0.54)
\end{gathered}
\] \\
\hline ML 3625 & & & \[
\begin{aligned}
& 1,500 \\
& (169)
\end{aligned}
\] & \[
\begin{aligned}
& 670,000 \\
& (75,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,100,000 \\
& (124,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,500,000 \\
& (169,000)
\end{aligned}
\] & \[
\begin{gathered}
10.3-19.8 \\
(46-88)
\end{gathered}
\] & 0.03 & \[
\begin{gathered}
1.23 \\
(0.56)
\end{gathered}
\] \\
\hline ML 3650 & & & \[
\begin{aligned}
& \hline 3,000 \\
& (339)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 760,000 \\
& (85,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,200,000 \\
& (135,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,600,000 \\
& (180,000)
\end{aligned}
\] & \[
\begin{aligned}
& 9.9-30.3 \\
& (44-135)
\end{aligned}
\] & 0.06 & \[
\begin{gathered}
1.51 \\
(0.68)
\end{gathered}
\] \\
\hline
\end{tabular}

Impact velocity range: 0.06 to \(1.5 \mathrm{ft} / \mathrm{sec}(0.02\) to \(0.46 \mathrm{~m} / \mathrm{sec})\)
Note: Side load not to exceed \(5^{\circ}\). Maximum side load depends on application.

Magnum Series MC/MA/ML 45
Self-Compensating and Adjustable

\section*{Primary Mount}

Adjuster (MA and ML only)

Clevis Mount

\section*{Side-Foot Mount}

45 Model Dimensions IN INCHES (MILLIMETERS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & Stroke & A & B & D & G & H & I* & J & K & T & W & C1 & C2 & C3 & C4 \\
\hline MC, MA, ML 4525 & \[
\begin{gathered}
0.91 \\
(23.1)
\end{gathered}
\] & \[
\begin{gathered}
5.69 \\
(144.5)
\end{gathered}
\] & \[
\begin{aligned}
& 1.97 \\
& (50)
\end{aligned}
\] & \multirow{3}{*}{\[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.36 \\
(34.5)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.38 \\
(34.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1 / 8 \\
\text { NPT }
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
0.87 \\
(22.1)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.65 \\
(41.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 1-3 / 4-12 \\
& \text { M45x1.5 }
\end{aligned}
\]} & \multirow{3}{*}{\[
\left\lvert\, \begin{gathered}
2.25 \\
(57.20)
\end{gathered}\right.
\]} & \multirow{3}{*}{\[
\begin{gathered}
0.75 \\
(19.1)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& .5005 \\
& (12.7)
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{array}{|c}
0.50 \\
(12.7)
\end{array}
\]} \\
\hline MC, MA, ML 4550 & \[
\begin{gathered}
\hline 1.91 \\
(48.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 7.69 \\
(195.3)
\end{gathered}
\] & \[
\begin{array}{|c}
\hline 2.97 \\
(75.4) \\
\hline
\end{array}
\] & & & & & & & & & & & & \\
\hline MC, MA 4575 & \[
\begin{gathered}
2.91 \\
(73.9)
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 9.69 \\
(246.1)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 3.97 \\
(100.8)
\end{array}
\] & & & & & & & & & & & & \\
\hline Model & C5 & C6 & C7 & C8 & C9 & C10 & C11 & C12 & C13 & C14 & F1 & F2 & F3 & F4 & F5 \\
\hline MC, MA, ML 4525 & \[
\begin{array}{|c|}
\hline 7.85 \\
(199.4)
\end{array}
\] & \multirow{3}{*}{\[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.06 \\
(26.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
0.69 \\
(17.5)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& .3755 \\
& (9.6)
\end{aligned}
\]} & \[
\begin{aligned}
& \hline 2.57 \\
& (65.3)
\end{aligned}
\] & \[
\begin{gathered}
\hline 1.51 \\
(38.4)
\end{gathered}
\] & \multirow{3}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
.505 \\
(12.8)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\]} & \[
\begin{array}{|c|}
\hline 3.50 \\
(88.9)
\end{array}
\] & \[
\begin{gathered}
\hline 1.94 \\
(49.3)
\end{gathered}
\] & \multirow{3}{*}{\[
\begin{gathered}
1.16 \\
(29.5)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 0.37 \\
& (9.5)
\end{aligned}
\]} \\
\hline MC, MA, ML 4550 & \[
\begin{gathered}
9.85 \\
(250.2)
\end{gathered}
\] & & & & & \[
\begin{array}{|c|}
\hline 3.57 \\
(90.7)
\end{array}
\] & \[
\begin{gathered}
\hline 2.51 \\
(63.8)
\end{gathered}
\] & & & & & \[
\begin{gathered}
4.38 \\
(111.8)
\end{gathered}
\] & \[
\begin{gathered}
\hline 3.06 \\
(77.7)
\end{gathered}
\] & & \\
\hline MC, MA, ML 4575 & \[
\begin{aligned}
& 11.85 \\
& (301)
\end{aligned}
\] & & & & & \[
\begin{array}{|c|}
\hline 4.57 \\
(116.1)
\end{array}
\] & \[
\begin{gathered}
\hline 3.51 \\
(89.2)
\end{gathered}
\] & & & & & \[
\begin{gathered}
5.38 \\
(237.8)
\end{gathered}
\] & \[
\begin{gathered}
4.06 \\
(103.1)
\end{gathered}
\] & & \\
\hline Model & F6 & F7 & F8 & F9 & & & & & & & & & & & \\
\hline MC, MA, ML 4525 & \multirow{3}{*}{\[
\begin{gathered}
3.75 \\
(95.3)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
0.56 \\
(14.2)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 0.35 \\
& (8.9)
\end{aligned}
\]} & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{}} \\
\hline MC, MA, ML 4550 & & & & & & & & & & & & & & & \\
\hline MC, MA 4575 & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
*For models MAA and MAS 33 the 1/8-27 male fitting is shipped with the shock. MAA and MAS 45 and 64 have pipe plugs.

\section*{Magnum Series MC/MA/ML 45 \\ Self-Compensating and Adjustable}

Specifications...MC Series, Self-Compensating
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{We Effective Weight lbs (kg)}} & \multirow[b]{2}{*}{\begin{tabular}{l}
E3 \\
Energy per Cycle in lbs (Nm)
\end{tabular}} & \multicolumn{3}{|l|}{Energy per Hour in lbs/hour (Nm/hour) E4} & \multirow[b]{2}{*}{Return Force lbs (N)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Return } \\
& \text { Time } \\
& \text { sec }
\end{aligned}
\]} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & Internal Accumulator (Self-Contained) & Extenal Accumulator (A/O Tank) & External
Accumulator
(Re-circulating) & & & \\
\hline MC 4525-1
MC 4525-2
MC 4525-3
MC 4525-4 & \(50-200\)
\(170-680\)
\(575-2,300\)
\(1,950-7,800\) & \((23-91)\)
\((77-300)\)
\((261-1,043)\)
\((885-3,538)\) & \[
\begin{aligned}
& 3,000 \\
& (339)
\end{aligned}
\] & \[
\begin{gathered}
950,000 \\
(107,000)
\end{gathered}
\] & \[
\begin{aligned}
& 1,400,000 \\
& (158,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,700,000 \\
& (192,000)
\end{aligned}
\] & \[
\begin{aligned}
& 15.1-22.8 \\
& (67-101)
\end{aligned}
\] & 0.03 & \[
\begin{gathered}
2.5 \\
(1.13)
\end{gathered}
\] \\
\hline MC 4550-1
MC 4550-2
MC 4550-3
MC 4550-4 & \begin{tabular}{|c|}
\(100-400\) \\
\(340-1,360\) \\
\(1,150-4,600\) \\
\(3,900-15,600\)
\end{tabular} & \begin{tabular}{c}
\((45-181)\) \\
\((154-617)\) \\
\((522-2,087)\) \\
\((1,769-7,076)\) \\
\hline\((136-54)\)
\end{tabular} & \[
\begin{aligned}
& 6,000 \\
& (678)
\end{aligned}
\] & \[
\begin{aligned}
& 1,000,000 \\
& (112,000)
\end{aligned}
\] & \[
\begin{aligned}
& 1,700,000 \\
& (192,000)
\end{aligned}
\] & \[
\begin{aligned}
& 2,200,000 \\
& (248,000)
\end{aligned}
\] & \[
\begin{aligned}
& 15.1-32.2 \\
& (67-143)
\end{aligned}
\] & 0.08 & \[
\begin{gathered}
3.0 \\
(1.36)
\end{gathered}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { MC 4575-1 } \\
\text { MC 4575-2 } \\
\text { MC 4575-3 } \\
\text { MC } 4575-4 \\
\hline
\end{array}
\] & \(150-600\)
\(510-2,040\)
\(1,730-6,920\)
\(5,850-23,400\) & \((136-544)\)
\((231-925)\)
\((785-3,139)\)
\((2,654-10,614)\) & \[
\begin{gathered}
9,000 \\
(1,017)
\end{gathered}
\] & \[
\begin{aligned}
& 1,300,000 \\
& (146,000)
\end{aligned}
\] & \[
\begin{aligned}
& 2,000,000 \\
& (225,000)
\end{aligned}
\] & \[
\begin{aligned}
& 2,500,000 \\
& (282,000)
\end{aligned}
\] & \[
\begin{aligned}
& 11.7-40.3 \\
& (52-179)
\end{aligned}
\] & 0.11 & \[
\begin{gathered}
3.5 \\
(1.59)
\end{gathered}
\] \\
\hline
\end{tabular}

Impact velocity range: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec})\)

\section*{Specifications...MA Series, Adjustable}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline MA 4525 & 95-22,000 & \((43-9,979)\) & \begin{tabular}{c}
3,450 \\
\((390)\)
\end{tabular} & \begin{tabular}{c}
950,000 \\
\((107,000)\)
\end{tabular} & \begin{tabular}{c}
\(1,400,000\) \\
\((158,000)\)
\end{tabular} & \begin{tabular}{l}
\(1,700,000\) \\
\((192,000)\)
\end{tabular} & \begin{tabular}{c}
\(15.1-22.8\) \\
\((67-101)\)
\end{tabular} & 0.03 & \begin{tabular}{c}
2.5 \\
\((1.13)\)
\end{tabular} \\
\hline MA 4550 & \(150-32,000\) & \((68-14,515)\) & \begin{tabular}{c}
6,900 \\
\((780)\)
\end{tabular} & \begin{tabular}{c}
\(1,000,000\) \\
\((112,000)\)
\end{tabular} & \begin{tabular}{l}
\(1,700,000\) \\
\((192,000)\)
\end{tabular} & \begin{tabular}{l}
\(2,200,000\) \\
\((248,000)\)
\end{tabular} & \begin{tabular}{l}
\(15.1-32.2\) \\
\((67-143)\)
\end{tabular} & 0.08 & \begin{tabular}{c}
3.0 \\
\((1.36)\)
\end{tabular} \\
\hline MA 4575 & \(155-33,000\) & \((70-14,968)\) & \begin{tabular}{c}
10,350 \\
\((1,169)\)
\end{tabular} & \begin{tabular}{c}
\(1,300,000\) \\
\((146,000)\)
\end{tabular} & \begin{tabular}{c}
\(2,000,000\) \\
\((225,000)\)
\end{tabular} & \begin{tabular}{l}
\(2,500,000\) \\
\((282,000)\)
\end{tabular} & \begin{tabular}{c}
\(11.7-40.3\) \\
\((52-179)\)
\end{tabular} & 0.11 & \begin{tabular}{c}
3.5 \\
\((1.59)\)
\end{tabular} \\
\hline
\end{tabular}

Impact velocity range: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec})\)

\section*{Specifications...ML Series, Low Velocity Adjustable}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline ML 4525 & N/A & N/A & \begin{tabular}{c}
3,450 \\
\((390)\)
\end{tabular} & \begin{tabular}{c}
950,000 \\
\((107,000)\)
\end{tabular} & \begin{tabular}{c}
\(1,400,000\) \\
\((158,000)\)
\end{tabular} & \begin{tabular}{c}
\(1,700,000\) \\
\((192,000)\)
\end{tabular} & \begin{tabular}{c}
\(15.1-22.8\) \\
\((67-98)\)
\end{tabular} & 0.03 & \begin{tabular}{c}
2.5 \\
\((1.13)\)
\end{tabular} \\
\hline ML 4550 & N/A & N/A & \begin{tabular}{c}
6,900 \\
\((780)\)
\end{tabular} & \begin{tabular}{l}
\(1,000,000\) \\
\((112,000)\)
\end{tabular} & \begin{tabular}{l}
\(1,700,000\) \\
\((192,000)\)
\end{tabular} & \begin{tabular}{l}
\(2,200,000\) \\
\((248,000)\)
\end{tabular} & \begin{tabular}{c}
\(15.1-32.2\) \\
\((67-143)\)
\end{tabular} & 0.08 & \begin{tabular}{c}
3.0 \\
\((1.36)\)
\end{tabular} \\
\hline
\end{tabular}

Impact velocity range: 0.06 to \(1.5 \mathrm{ft} / \mathrm{sec}(0.02\) to \(0.46 \mathrm{~m} / \mathrm{sec})\)

Note: A side port can be adapted to Magnum Series 45 MAA, MLA and MCA models and is a special adder item. A side port adapter ring is molded onto the outer tube and increases the overall diameter by 0.5 inches (12.7 mm) in the area of the ring. The side port centerline is located 1.04 inches \((26.4 \mathrm{~mm})\) from the front of the outer tube. Add (-P) to the model ordering code if a side port is desired, see page 34.
Note: Side load not to exceed \(5^{\circ}\). Maximum side load depends on application.
Lock nut included with each shock absorber. See page 51 for dimensions.

Magnum Series MC/MA/ML 64 Self-Compensating and Adjustable

Adjuster (MA and ML only)

Primary Mount

Clevis Mount

\section*{Side-Foot Mount}

64 Model Dimensions IN INCHES (MILLIMETERS)

\section*{Magnum Series MC/MA/ML 64 \\ Self-Compensating and Adjustable}

Specifications...MC Series, Self-Compensating
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{We Effective Weight lbs (kg)}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { E3 } \\
\text { Energy per } \\
\text { Cycle } \\
\text { in lbs }(\mathrm{Nm}) \\
\hline
\end{gathered}
\]} & \multicolumn{3}{|l|}{Energy per Hour in lbs/hour (Nm/hour) E4} & \multirow[b]{2}{*}{Return Force lbs (N)} & \multirow[b]{2}{*}{Return Time sec} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & Internal Accumulator (Self-Contained) & Extenal Accumulator (A/O Tank) & External Accumulator (Re-circulating) & & & \\
\hline MC 6450-1 & 300-1,200 & (136-544) & & & & & & & \\
\hline MC 6450-2 & 1,020-4,080 & (463-1,851) & 15,000 & 1,300,000 & 2,600,000 & 3,400,000 & 20.1-34.9 & 0.12 & 6.4 \\
\hline MC 6450-3 & 3,460-13,840 & (1,569-6,278) & \((1,695)\) & \((146,000)\) & \((293,000)\) & \((384,000)\) & (89-155) & 0.12 & (2.90) \\
\hline MC 6450-4 & 11,700-46,800 & \((5,307-21,228)\) & & & & & & & \\
\hline MC 64100-1 & 600-2,400 & (272-1,089) & & & & & & & \\
\hline MC 64100-2 & 2,040-8,160 & (925-3,701) & 30,000 & 1,700,000 & 3,400,000 & 4,400,000 & 23.5-61 & 0.34 & 8.15 \\
\hline MC 64100-3 & 6,920-27,680 & \((3,139-12,556)\) & \((3,390)\) & \((192,000)\) & \((384,000)\) & \((497,000)\) & (104-271) & & (3.70) \\
\hline MC 64100-4 & 23,400-93,600 & \((10,614-42,457)\) & & & & & & & \\
\hline MC 64150-1 & 900-3,600 & (408-1,633) & & & & & & & \\
\hline MC 64150-2 & 3,060-12,240 & \((1,388-5,552)\) & 45,000 & 2,200,000 & 4,400,000 & 5,700,000 & 16.9-82.2 & 0.48 & 11.25 \\
\hline MC 64150-3 & 10,380-41,520 & \((4,708-18,833)\) & \((5,084)\) & \((248,000)\) & \((497,000)\) & \((644,000)\) & (75-366) & 0.48 & (5.10) \\
\hline MC 64150-4 & 35,100-140,400 & (15,921-63,685) & & & & & & & \\
\hline
\end{tabular}

Impact velocity range: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec})\).

\section*{Specifications...MA Series, Adjustable}
\(\left.\)\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline MA 6450 & \(480-110,000\) & \((218-49,895)\) & \begin{tabular}{c}
18,000 \\
\((2,034)\)
\end{tabular} & \begin{tabular}{c}
\(1,300,000\) \\
\((146,000)\)
\end{tabular} & \begin{tabular}{c}
\(2,600,000\) \\
\((293,000)\)
\end{tabular} & \begin{tabular}{c}
\(3,400,000\) \\
\((384,000)\)
\end{tabular} & \begin{tabular}{c}
\(20.1-34.9\) \\
\((69-155)\)
\end{tabular} & 0.12
\end{tabular} \begin{tabular}{c}
6.4 \\
\((2.90)\)
\end{tabular} \right\rvert\,

Impact velocity range: 0.5 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.15\) to \(5 \mathrm{~m} / \mathrm{sec})\).

Specifications...ML Series, Low Velocity Adjustable
\(\left.\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \text { ML 6425 } & \text { N/A } & \text { N/A } & \begin{array}{c}9,000 \\ (1,017)\end{array} & \begin{array}{c}1,100,000 \\ (124,000)\end{array} & \begin{array}{c}2,200,000 \\ (248,000)\end{array} & \begin{array}{c}2,900,000 \\ (328,000)\end{array} & \begin{array}{c}26.7-34.9 \\ (119-155)\end{array} & \begin{array}{c}0.06 \\ (2.49)\end{array} \\ \hline \text { ML 6450 } & \text { N/A } & \text { N/A } & \begin{array}{c}18,000 \\ (2,034)\end{array} & \begin{array}{c}1,300,000 \\ (146,000)\end{array} & \begin{array}{c}2,600,000 \\ (293,000)\end{array} & \begin{array}{c}3,400,000 \\ (384,000)\end{array} & \begin{array}{c}20.1-34.9 \\ (89-155)\end{array} & 0.12\end{array} \begin{array}{c}6.4 \\ (2.90)\end{array}\right]\)

Impact velocity range: 0.06 to \(1.5 \mathrm{ft} / \mathrm{sec}(0.02\) to \(0.46 \mathrm{~m} / \mathrm{sec})\).
*For models MAA and MAS 33 the 1/8-27 male fitting is shipped with the shock. MAA and MAS 45 and 64 have pipe plugs. Note: A side port can be adapted to Magnum Series 64 MAA, MLA and MCA models and is a special adder item. A side port adapter ring is molded onto the outer tube and increases the overall diameter by 0.5 inches (12.7 mm) in the area of the ring. The side port centerline is located 1.47 inches \((37.3 \mathrm{~mm})\) from the front of the outer tube. Add (-P) to the model ordering code if a side port is desired, see page 34.
Note: MA and MC 64150 models include an integral, non-removable stop block, not a stop collar. Adjustable models can be adjusted from front or rear.
Note: MAA and MCA 64150 models include a stop collar, 0.75 inches (19 mm) longer than the standard 64 model stop collar.
Note: For models MAA, MLA and MCA indicate \(P\) for the side port option when ordering clevis mount.
Note: 64150 models do not include a stop collar. Adjustable models can still be adjusted from front or rear.
Note: Side load not to exceed \(5^{\circ}\). Maximum side load depends on application.
Lock nut included with each shock absorber. See page 51 for dimensions.

Ordering Information
MC Series, Self-Compensating

\section*{MA Series, Adjustable}

\section*{Return Method and Accumulator Style}

MA = Self-Contained Spring Return, Internal Accumulator
MAA \(=\) Air Return, External Accumulator
MAS = Spring Return, External Accumulator MAN = Self Return (Clevis), Internal Accumulator
\begin{tabular}{|ccc|}
\hline \multicolumn{3}{c|}{ Model Number } \\
\hline 3325 & 4525 & 6450 \\
3350 & 4550 & 64100 \\
3625 & 4575 & 64150 \\
3650 & & \\
\hline
\end{tabular}

\section*{NOTES}

\section*{1-1/2" Bore Series Adjustable}

1-1/2" bore series shock absorbers are designed for the toughest environments. These durable adjustable models provide outstanding deceleration over a wide range of effective weight conditions. Large energy capacities stop heavy loads set into motion by high propelling forces, without damage.
Applications include: Automotive manufacturing and production equipment, large robotics, heavy conveyors, foundries and steel industry equipment.

\section*{Technical Data}

Impact velocity range: 0.5 to \(15 \mathrm{ft} / \mathrm{sec}(0.15\) to \(4.5 \mathrm{~m} / \mathrm{sec})\)
Operating temperature: \(10^{\circ}\) to \(150^{\circ} \mathrm{F}\left(-12^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical stop: Must be provided .09 inch (2.3 mm) before end of stroke.
Oil type: American 46
Materials: Steel body with black oxide finish. Piston rod high tensile steel, hardened and chrome plated. Return spring zinc plated.
Adjustment: After installation of the shock absorber, cycle the machine a number of times. Turn the adjustment ring against the scale marked 0 to 9 , until optimum deceleration is achieved (i.e. smooth deceleration throughout the stroke).
Hard impact at the start of stroke-turn adjuster toward 9. Hard set-down at the end of stroke-turn adjuster toward 0 . Poly pad: Optional
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Specifications} \\
\hline \multirow[b]{2}{*}{Model} & \multirow[b]{2}{*}{We Effective Weight lbs (kg)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { E3 } \\
\text { Energy per } \\
\text { Cycle } \\
\text { in lbs (Nm) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Energy per Hour in lbs/hour (Nm/hour)
E4} & \multirow[b]{2}{*}{Return Force lbs (N)} & \multirow[b]{2}{*}{Return Time sec} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & Internal Accumulator (Self-Contained) & Extenal Accumulator (A/O Tank) & & & \\
\hline 1-1/2 \(\times 2\) & \[
\begin{gathered}
430-70,000 \\
(195-31,750)
\end{gathered}
\] & \[
\begin{aligned}
& 16,000 \\
& (1,800)
\end{aligned}
\] & \[
\begin{aligned}
& 3,200,000 \\
& (361,550)
\end{aligned}
\] & \[
\begin{aligned}
& 4,000,000 \\
& (451,900)
\end{aligned}
\] & \[
\begin{aligned}
& 34.9-47.6 \\
& (155-210)
\end{aligned}
\] & . 10 & \[
\begin{gathered}
16.4 \\
(7.44)
\end{gathered}
\] \\
\hline 1-1/2 \(\times 3-1 / 2\) & \[
\begin{gathered}
480-80,000 \\
(218-36,280) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 28,000 \\
& (3,160)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 5,600,000 \\
& (632,700) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 7,000,000 \\
& (790,890)
\end{aligned}
\] & \[
\begin{gathered}
25.4-47.6 \\
(113-210) \\
\hline
\end{gathered}
\] & . 25 & \[
\begin{gathered}
19.4 \\
(8.80)
\end{gathered}
\] \\
\hline 1-1/2 x 5 & \[
\begin{gathered}
500-90,000 \\
(227-40,800)
\end{gathered}
\] & \[
\begin{aligned}
& 40,000 \\
& (4,500)
\end{aligned}
\] & \[
\begin{aligned}
& 8,000,000 \\
& (903,870)
\end{aligned}
\] & \[
\begin{aligned}
& 10,000,000 \\
& (1,129,840)
\end{aligned}
\] & \[
\begin{gathered}
20.7-52.5 \\
(92-230)
\end{gathered}
\] & . 40 & \[
\begin{gathered}
22.7 \\
(10.30)
\end{gathered}
\] \\
\hline 1-1/2 x 6-1/2 & \[
\begin{gathered}
680-100,000 \\
(308-45,350)
\end{gathered}
\] & \[
\begin{aligned}
& 52,000 \\
& (5,870)
\end{aligned}
\] & \[
\begin{array}{r}
10,400,000 \\
(1,175,000)
\end{array}
\] & \[
\begin{aligned}
& 13,000,000 \\
& (1,468,800)
\end{aligned}
\] & \[
\begin{gathered}
20.7-97.4 \\
(92-430) \\
\hline
\end{gathered}
\] & . 40 & \[
\begin{gathered}
25.0 \\
(11.34) \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

Ordering Information

Return Method and Accumulator Style

\footnotetext{
A = Spring Return, Internal Accumulator AA = Air Return, External Accumulator
SA = Spring Return, External Accumulator
NA = Self (Clevis) Return, Internal Accumulator
}

\section*{1-1/2" Bore Series} Adjustable

Clevis Mount

1-1/2" Bore Series Dimensions in INCHES (MILLIMETERS)
\begin{tabular}{|c|}
\hline Size & \multicolumn{2}{|l|}{Stroke} & A & B & C & D & G & H & I & J & N & 0 & P & V & W & C1 & & C2 & C3 & C4 & C5 & C6 & C7 \\
\hline 1-1/2 x 2 & \multicolumn{2}{|l|}{\[
\begin{gathered}
2.00 \\
(50.8) \\
\hline
\end{gathered}
\]} & \[
\begin{gathered}
9.69 \\
(246.1)
\end{gathered}
\] & \[
\begin{gathered}
4.13 \\
(104.8) \\
\hline
\end{gathered}
\] & \multirow{4}{*}{\[
\begin{gathered}
0.81 \\
(20.6)
\end{gathered}
\]} & \multirow{4}{*}{\[
\left|\begin{array}{c}
1.00 \\
(25.4)
\end{array}\right|
\]} & \multirow{4}{*}{\[
\begin{gathered}
2.69 \\
(68.3)
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{array}{|c}
2.75 \\
(69.9)
\end{array}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 1 / 2 \\
& \text { NPT }
\end{aligned}
\]} & \multirow{4}{*}{\[
\left.\begin{gathered}
1.38 \\
(35.1)
\end{gathered} \right\rvert\,
\]} & \[
\begin{gathered}
1.38 \\
(35.0) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.28 \\
& (7.1) \\
& \hline
\end{aligned}
\] & \multirow{4}{*}{\[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{gathered}
4.00 \\
(101.6)
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\]} & \multicolumn{2}{|l|}{\multirow{4}{*}{\[
\begin{array}{|c}
1.50 \\
(38.1)
\end{array}
\]}} & \multirow{4}{*}{\[
\begin{aligned}
& 0.7525 \\
& (19.11
\end{aligned}
\]} & & \begin{tabular}{l}
12.94 \\
\(328.6)\) \\
\hline 15.97
\end{tabular} & \multirow{4}{*}{\[
\begin{gathered}
0.63 \\
(16.0)
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\]} \\
\hline 1-1/2 \(\times\) 3-1/2 & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline 3.50 \\
(88.9)
\end{gathered}
\]} & \[
\begin{gathered}
\hline 12.69 \\
(322.3) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 5.63 \\
(142.9)
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c}
\hline 2.00 \\
(50.8) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 0.28 \\
& (7.1)
\end{aligned}
\] & & & & & & & & \[
\begin{array}{|c|c|}
\hline 15 \\
0.75 \\
\hline 40
\end{array}
\] & 15.97
\(405.6)\) & & \\
\hline 1-1/2 \(\times 5\) & \[
\begin{gathered}
5.00 \\
(127.0)
\end{gathered}
\] & & .69 \({ }^{\text {8.5) }}\)) 7 & \[
\begin{gathered}
7.13 \\
(181.0)
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c}
2.00 \\
(50.8) \\
\hline
\end{array}
\] & \[
\begin{gathered}
1.03 \\
(26.2) \\
\hline
\end{gathered}
\] & & & & & & 38.1) (19. & & \[
\begin{aligned}
& 19.1) \\
& \hline 18 \\
& \hline
\end{aligned}
\] & \begin{tabular}{|l|}
18.97 \\
\(481.8)\) \\
\hline 2.72
\end{tabular} & & \\
\hline 1-1/2 \(\times 6-1 / 2\) & \[
\begin{gathered}
6.50 \\
(165.1)
\end{gathered}
\] & & & \[
\begin{gathered}
9.38 \\
(238.1)
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c}
\hline 2.00 \\
(50.8)
\end{array}
\] & \[
\begin{gathered}
1.78 \\
(45.2)
\end{gathered}
\] & & & & & & & & & 22.72
\(577.1)\) & & \\
\hline Size & C8 & C10 & C11 & 1 C 12 & C13 & C14 & C15 & C16 & F1 & F2 & F3 & F4 & F5 & F6 & F7 & F8 & F9 & M1 & 1 M2 & M3 & M4 & M5 & M6 \\
\hline 1-1/2 \(\times 2\) & & \[
\begin{gathered}
5.41 \\
(137.3) \\
\hline
\end{gathered}
\] & & & & & & & & \[
\left|\begin{array}{c}
* * 5.18 \\
(131.6)
\end{array}\right|
\] & \[
\begin{array}{|c|}
\hline * * 4.31 \\
(109.5)
\end{array}
\] & & & & & & & & & & & & \\
\hline 1-1/2 \(\times\) 3-1/2 & 1.41 & \[
\begin{array}{c|}
6.91 \\
(175.4)
\end{array}
\] & 1.40 & 1.50 & 1.25 & & 0.94 & 1.06 & 0.63 & \[
\begin{array}{|c|}
\hline 6.69 \\
(169.9)
\end{array}
\] & \[
\left\lvert\, \begin{gathered}
5.81 \\
(147.6)
\end{gathered}\right.
\] & 2.00 & 0.63 & 6.50 & 5.50 & 0.75 & 2.03 & 34.00 & O 4.00 & 0.75 & 0.53 & 3.00 & 3.00 \\
\hline 1-1/2 \(\times 5\) & (35.7) & \[
\begin{gathered}
8.41 \\
(213.5)
\end{gathered}
\] & (35.6) &) (38.1) & (31.8) & 5/8 & (23.9) & (27.0) & (15.9) & \[
\left.\left\lvert\, \begin{array}{c}
8.19 \\
(208.0)
\end{array}\right.\right)
\] & \[
\begin{gathered}
7.31 \\
(185.7)
\end{gathered}
\] & (50.8) & (16.0) & (165.1) & (139.7) & (19.1) & (51.6) & \[
\text { 6) } \begin{gathered}
(101.6) \\
*
\end{gathered}
\] & .6) (101.6) & 6) (19.0) &) (13.5) & (76.2) & (76.2) \\
\hline 1-1/2 \(\times 6-1 / 2\) & & \[
\begin{array}{|c}
10.66 \\
(270.7)
\end{array}
\] & & & & & & & & \[
\left.\begin{gathered}
9.69 \\
(246.1)
\end{gathered} \right\rvert\,
\] & \[
\left|\begin{array}{c}
9.56 \\
(242.8)
\end{array}\right|
\] & & & & & & & [5.00 & (0) & & & [4.00 & \\
\hline
\end{tabular}
*Rectangular flange dimension
**Note: \(1-1 / 2 \times 2\) shock absorbers available with side-foot mount in AA and SA models only.

\section*{Heavy Industrial Shock Absorbers CA 2 to CA 4 Self-Compensating}

\section*{Technical Data}

Impact velocity range: 1 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.30\) to \(5 \mathrm{~m} / \mathrm{sec})\)
Operating Temperature: \(10^{\circ}\) to \(150^{\circ} \mathrm{F}\left(-12^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)

\section*{Mechanical stop:}

2", 3" bore: Must be provided .09 inch (2.3 mm) before end of stroke.
4" bore: Must be provided .09 inch (2.3 mm) before end of stroke.

Oil type: ATF
Materials: Steel body with black oxide finish. Piston rod high tensile steel, hardened and chrome plated. Return spring zinc plated.

Note: See pages 44 and 45 for CA 4 " Bore dimensions and specifications.

CA 2, CA 3 and 4" Bore Series of selfcompensating shock absorbers are designed for extremely heavy duty applications and provide smooth deceleration under changing conditions. High energy capacities combined with wide effective weight ranges qualify these units to perform in the most demanding environments.
The new CA 2 offers up to 170\% of the energy per cycle capacity of former models. The rugged new CA 3 offers up to \(125 \%\) of the energy capacity of former models. You can select the correct model for your application by utilizing the PARKERSIZE INDUSTRIAL SHOCK ABSORBER SIZING PROGRAM or the capacity charts. Replacing existing shock absorbers with the new CA Series is easy-just provide us the type and adjustment setting of your existing units and we will, do the rest. These dependable units are available self-contained or for use with an external air/oil tank.
Applications include: foundry, steel, marine, lumber and other heavy equipment industries.

\section*{Heavy Industrial Shock Absorbers A2 and A3 Adjustable}

\section*{A2 and A3 Series adjustable shock absorbers} are capable of decelerating heavy duty loads. These reliable units replace the former 2" and 3 " large bore adjustable shock absorbers.
Energy capacity ratings are 228\% of former models. In addition, effective weight ranges have increased dramatically, resulting in the capability of handling a wider range of applications and increases in velocity. The units are easily adjusted by means of a \(5 / 16\) inch (8 mm) hex socket adjuster located at the bottom of the outer body. These dependable shock absorbers are maintenance free and are available selfcontained or for use with an external air/oil tank.

Features include a considerably reduced outer diameter, internal accumulator and threaded mounting brackets, easily adaptable to the front or rear of the outer body.

Applications include: foundry, steel, marine, lumber, and other heavy equipment industries.

\section*{Technical Data}

Impact velocity range: 0.33 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.1 \mathrm{to} 5 \mathrm{~m} / \mathrm{sec})\)
Operating temperature: \(10^{\circ}\) to \(150^{\circ} \mathrm{F}\left(-12^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical stop: Must be provided .09 inch (2.3 mm) before end of stroke.

Oil type: ATF
Materials: Steel body with black oxide finish. Piston rod high tensile steel, hardened and chrome plated. Return spring zinc plated. To avoid reducing heat dissipation, do not paint.

Adjustment: After installation of the shock absorber, cycle the machine a number of times. Turn the hex socket adjuster against the scale marked 0 to 9 , until optimum deceleration is achieved (i.e. smooth deceleration throughout the stroke).

Hard impact at the start of stroke-turn adjuster toward 9.
Hard set-down at the end of stroke-turn adjuster toward 0.

CA and A 2", 3" Bore Series - Heavy Duty Models
(CA) Self-Compensating and (A) Adjustable

Rear Flange

\section*{2" Bore Foot Mount}

Front Flange

Rectangular Flange

Clevis Mount

3" Bore Foot Mount

\section*{CA and A 2", 3" Bore Series - Heavy Duty Models \\ (CA) Self-Compensating and (A) Adjustable}

\section*{Dimensions in INCHES (MILLIMETERS) Self Compensating and Adjustable Models}
\begin{tabular}{|c|}
\hline Size & Stroke & A & B & C & D & G & H & 1 & J & N & V & C1 & C2 & C3 & C4 & C5 & C6 & C7 & C8 & C10 & C11 \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 2 \\
& \text { A } 2 \times 2
\end{aligned}
\] & \[
\begin{gathered}
2.00 \\
(50.8) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 12.31 \\
(312.7) \\
\hline
\end{array}
\] & \[
\begin{gathered}
4.31 \\
(109.5) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 0.82 \\
(20.8)
\end{array}
\] & \multirow{5}{*}{\[
\left[\begin{array}{c}
1.38 \\
(35.1)
\end{array}\right]
\]} & \[
\begin{gathered}
3.06 \\
(77.7) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2.75 \\
(69.9)
\end{gathered}
\] & \multirow{5}{*}{\[
\begin{aligned}
& 3 / 4 \\
& \text { NPT }
\end{aligned}
\]} & \[
\begin{gathered}
1.38 \\
(35.1) \\
\hline
\end{gathered}
\] & \multirow{5}{*}{\[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{array}{|c|}
\hline \text { CA } \\
4.25 \\
(108.0) \\
\\
A^{*} \\
4.63 \\
(118.0)
\end{array}
\]} & \multirow{5}{*}{\[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{aligned}
& 1.005 \\
& (25.5)
\end{aligned}
\]} & \multirow{5}{*}{\[
\left|\begin{array}{c}
1.00 \\
(25.4)
\end{array}\right|
\]} & \[
\begin{array}{|c|}
\hline 17.00 \\
(431.8) \\
\hline
\end{array}
\] & \multirow{5}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\]} & \multirow{5}{*}{\[
\left.\begin{gathered}
1.50 \\
(38.1)
\end{gathered} \right\rvert\,
\]} & \[
\begin{array}{|c|}
\hline 6.05 \\
(153.7) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 2.06 \\
(52.3) \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { CA 2x4 } \\
& \text { A 2x4 }
\end{aligned}
\] & \[
\begin{gathered}
4.00 \\
(101.6)
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 16.31 \\
(414.0) \\
\hline
\end{array}
\] & \[
\begin{gathered}
6.31 \\
(160.3)
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 0.82 \\
(20.8)
\end{array}
\] & & \[
\begin{gathered}
3.06 \\
(77.7)
\end{gathered}
\] & \[
\begin{gathered}
2.75 \\
(69.9)
\end{gathered}
\] & & \[
\begin{gathered}
\hline 1.38 \\
(35.1)
\end{gathered}
\] & & & & & & & \[
\begin{array}{|l|}
\hline 21.00 \\
(533.4)
\end{array}
\] & & & & \[
\begin{array}{|c|}
\hline 8.05 \\
(204.4)
\end{array}
\] & \[
\begin{gathered}
2.06 \\
(52.3)
\end{gathered}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { CA 2x6 } \\
\text { A 2x6 }
\end{array}
\] & \[
\begin{gathered}
6.00 \\
(152.4)
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 20.31 \\
(515.9) \\
\hline
\end{array}
\] & \[
\begin{gathered}
8.31 \\
(211.1) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.82 \\
(20.8)
\end{gathered}
\] & & \[
\begin{array}{|c}
\hline 3.63 \\
(92.2)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 2.75 \\
(69.9) \\
\hline
\end{array}
\] & & \[
\begin{array}{|c|}
\hline 1.38 \\
(35.1)
\end{array}
\] & & & & & & & \[
\begin{array}{|l}
\hline 25.00 \\
(635)
\end{array}
\] & & & & \[
\begin{array}{|c|}
\hline 10.05 \\
(255.2) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 2.06 \\
(52.3)
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { CA 2x8 } \\
& \text { A 2x8 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.00 \\
(203.2) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 25.31 \\
(642.9) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 11.31 \\
(287.3) \\
\hline
\end{array}
\] & \[
\begin{gathered}
1.82 \\
(46.2)
\end{gathered}
\] & & \[
\begin{array}{|c|}
\hline 4.00 \\
(101.6) \\
\hline
\end{array}
\] & \[
\begin{gathered}
3.63 \\
(92.2) \\
\hline
\end{gathered}
\] & & \[
\begin{array}{|c|}
\hline 2.38 \\
(60.5) \\
\hline
\end{array}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 29.00 \\
(736.6) \\
\hline
\end{array}
\] & & & & \[
\begin{gathered}
12.05 \\
(306.1)
\end{gathered}
\] & \[
\begin{aligned}
& 0.75 \\
& (19)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 10 \\
& \text { A } 2 \times 10
\end{aligned}
\] & \[
\begin{aligned}
& 10.00 \\
& (254) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 29.31 \\
(744.5) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 13.31 \\
(338.1)
\end{array}
\] & \[
\begin{gathered}
1.82 \\
(46.2)
\end{gathered}
\] & & \[
\begin{array}{|c|}
\hline 4.50 \\
(114.3) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 4.25 \\
(108.0) \\
\hline
\end{array}
\] & & \[
\begin{array}{|c|}
\hline 2.38 \\
(60.5)
\end{array}
\] & & & & & & & \[
\left.\begin{array}{|c|}
\hline 33.00 \\
(838.2)
\end{array} \right\rvert\,
\] & & & & \[
\begin{array}{|c|}
\hline 14.05 \\
(356.9) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 1.06 \\
(26.9)
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 5 \\
& \text { A } 3 \times 5
\end{aligned}
\] & \[
\begin{array}{r}
5.00 \\
(127) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 19.25 \\
(489.0) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 8.25 \\
(209.6) \\
\hline
\end{array}
\] & \multirow{3}{*}{\[
\begin{aligned}
& 2.00 \\
& (50.8)
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.75 \\
(44.5)
\end{gathered}
\]} & \[
\begin{array}{|c|}
\hline 4.75 \\
(120.7) \\
\hline
\end{array}
\] & \multirow{3}{*}{\[
\begin{gathered}
4.38 \\
(111.3)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 3 / 4 \\
& \text { NPT }
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{gathered}
2.75 \\
(69.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{array}{r}
3.13 \\
(79.5)
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline \text { CA } \\
5.50 \\
(139.7) \\
\mathrm{A}^{\star} \\
6.00 \\
(152.4) \\
\hline
\end{array}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.01 \\
(25.5)
\end{gathered}
\]} & \multirow{3}{*}{\[
\left|\begin{array}{c}
1.00 \\
(25.4)
\end{array}\right|
\]} & \[
\begin{array}{|c|}
\hline 23.00 \\
(584.2) \\
\hline
\end{array}
\] & \multirow{3}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\]} & \[
\begin{array}{|c|}
\hline 9.05 \\
(229.9) \\
\hline
\end{array}
\] & \multirow{3}{*}{\[
\begin{gathered}
1.12 \\
(28.4)
\end{gathered}
\]} \\
\hline \[
\begin{array}{|l|l|}
\hline \text { CA 3x8 } \\
\text { A } 3 \times 8 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline 8.00 \\
(203.2) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 25.25 \\
(641.4) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 11.25 \\
(285.8) \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c|}
\hline 4.75 \\
(120.7) \\
\hline
\end{array}
\] & & & & & & & & & & \[
\begin{array}{|c|}
\hline 29.00 \\
(736.6) \\
\hline
\end{array}
\] & & & & \[
\begin{gathered}
12.05 \\
(306.1)
\end{gathered}
\] & \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 12 \\
& \text { A } 3 \times 12
\end{aligned}
\] & \[
\begin{gathered}
12.00 \\
(304.8)
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 35.03 \\
(889.8) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 17.03 \\
(432.6) \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c|}
\hline 4.84 \\
(122.9) \\
\hline
\end{array}
\] & & & & & & & & & & \[
\begin{aligned}
& 38.78 \\
& (985) \\
& \hline
\end{aligned}
\] & & & & \[
\begin{array}{c|}
\hline 17.83 \\
(452.9)
\end{array}
\] & \\
\hline Size & Stroke & C12 & C13 & C14 & C15 & C16 & F1 & F2 & F3 & F4 & F5 & F6 & F7 & F8 & F9 & M1 & M2 & M3 & M4 & M5 & M6 \\
\hline \[
\begin{aligned}
& \text { CA 2x2 } \\
& \text { A } 2 \times 2 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
2.00 \\
(50.8) \\
\hline
\end{gathered}
\] & \multirow{5}{*}{\[
\begin{gathered}
3.5 \\
(88.9)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
1.75 \\
(44.5)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.63 \\
(16.0)
\end{gathered}
\]} & \[
\begin{array}{|c|}
\hline 9.5 \\
(241.3) \\
\hline
\end{array}
\] & \[
\begin{array}{c|}
\hline 3.44 \\
(87.4) \\
\hline
\end{array}
\] & \multirow{5}{*}{\[
\begin{gathered}
3.13 \\
(79.5)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.63 \\
(16.0)
\end{gathered}
\]} & \multirow{5}{*}{\[
\left|\begin{array}{c}
8.00 \\
(203.2)
\end{array}\right|
\]} & \multirow{5}{*}{\[
\begin{gathered}
6.50 \\
(165.1)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{array}{|c}
2.75 \\
(69.9)
\end{array}
\]} & \multirow{5}{*}{\[
\left|\begin{array}{c}
5.50 \\
(139.7)
\end{array}\right|
\]} & \multirow{5}{*}{\[
\left|\begin{array}{c}
5.50 \\
(139.7)
\end{array}\right|
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.75 \\
(19.1)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.66 \\
(16.8)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
4.38 \\
(111.3)
\end{gathered}
\]} & \multirow{5}{*}{\[
\left.\begin{gathered}
4.38 \\
(111.3)
\end{gathered} \right\rvert\,
\]} \\
\hline \[
\begin{aligned}
& \text { CA 2x4 } \\
& \text { A 2x4 }
\end{aligned}
\] & \[
\begin{gathered}
4.00 \\
(101.6) \\
\hline
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 11.5 \\
(292.1) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 5.44 \\
(138.2) \\
\hline
\end{array}
\] & & & & & & & & & & & & \\
\hline \[
\begin{array}{|l}
\hline \text { CA } 2 \times 6 \\
\text { A } 2 \times 6 \\
\hline
\end{array}
\] & \[
\begin{gathered}
6.00 \\
(152.4) \\
\hline
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 13.5 \\
(342.9)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 7.44 \\
(189.0) \\
\hline
\end{array}
\] & & & & & & & & & & & & \\
\hline \[
\begin{array}{|l|}
\hline \text { CA 2x8 } \\
\text { A 2x8 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
8.00 \\
(203.2) \\
\hline
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 15.5 \\
(393.7)
\end{array}
\] & \[
\begin{gathered}
10.44 \\
(265.2) \\
\hline
\end{gathered}
\] & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 10 \\
& \text { A } 2 \times 10
\end{aligned}
\] & \[
\begin{aligned}
& 10.00 \\
& (254)
\end{aligned}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 17.5 \\
(444.5)
\end{array}
\] & \[
\begin{array}{|r|}
\hline 12.44 \\
(316.0) \\
\hline
\end{array}
\] & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 5 \\
& \text { A } 3 \times 5
\end{aligned}
\] & \[
\begin{array}{r}
5.00 \\
(127) \\
\hline
\end{array}
\] & \multirow{3}{*}{\[
\begin{gathered}
3.5 \\
(88.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 2.00 \\
& (50.8)
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.75 \\
(44.5)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \[
\begin{array}{|c|}
\hline 10.25 \\
(260.4) \\
\hline
\end{array}
\] & \[
\begin{gathered}
8.50 \\
(215.9)
\end{gathered}
\] & \multirow{3}{*}{\[
\begin{gathered}
3.15 \\
(80.0)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{array}{r}
1.00 \\
(25.4)
\end{array}
\]} & \multirow{3}{*}{\[
\begin{gathered}
10.00 \\
(254.0)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
8.50 \\
(215.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.73 \\
(43.9)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
3.15 \\
(80.0)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
6.00 \\
(152.4)
\end{gathered}
\]} & \multirow{3}{*}{\[
\left|\begin{array}{c}
6.50 \\
(165.1)
\end{array}\right|
\]} & \multirow{3}{*}{\[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{gathered}
0.66 \\
(16.8)
\end{gathered}
\]} & \multirow{3}{*}{\[
\left.\begin{array}{|c|}
\hline 4.88 \\
(124.0)
\end{array} \right\rvert\,
\]} & \multirow{3}{*}{\[
\begin{gathered}
5.38 \\
(136.7)
\end{gathered}
\]} \\
\hline \[
\begin{array}{|l|l|}
\hline \text { CA 3x8 } \\
\text { A } 3 \times 8 \\
\hline
\end{array}
\] & \[
\begin{gathered}
8.00 \\
(203.2) \\
\hline
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 13.25 \\
(336.6) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 11.50 \\
(292.1)
\end{array}
\] & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 12 \\
& \text { A } 3 \times 12
\end{aligned}
\] & \[
\begin{gathered}
12.00 \\
(304.8)
\end{gathered}
\] & & & & & & & \[
\begin{array}{|c|}
\hline 17.25 \\
(438.2)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 17.28 \\
(438.9)
\end{array}
\] & & & & & & & & & & & & \\
\hline Size & & & M7 & M8 & M9 & M10 & M11 & M12 & \multicolumn{13}{|c|}{\multirow[t]{2}{*}{*See rear flange illustration on page 44 for AA and SA model dimensions.}} \\
\hline \[
\begin{aligned}
& \text { CA } 3 \\
& \text { A } 3
\end{aligned}
\] & \multicolumn{2}{|l|}{Rectangular Flange} & \[
\begin{array}{|c|}
\hline 6.50 \\
(165.1) \\
\hline
\end{array}
\] & \[
\left.\left\lvert\, \begin{array}{c}
8.00 \\
(203.2)
\end{array}\right.\right)
\] & \[
\begin{array}{|c|}
\hline 1.00 \\
(25.4)
\end{array}
\] & \[
\begin{array}{|c}
0.78 \\
(19.8)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 4.50 \\
(114.3)
\end{array}
\] & \[
\begin{array}{|c|}
\hline 6.50 \\
(165.1)
\end{array}
\] & & & & & & & & & & & & & \\
\hline
\end{tabular}

Specifications...Self-Compensating Models
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{We
Effective Weight Effective Weight
lbs (kg)}} & \multirow[b]{2}{*}{\begin{tabular}{l}
E3 \\
Energy per Cycle in lbs (Nm)
\end{tabular}} & \multicolumn{3}{|l|}{Energy per Hour in lbs/hour (Nm/hour)} & \multirow[b]{2}{*}{Return Force lbs (N)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Return } \\
\text { Time } \\
\text { sec }
\end{gathered}
\]} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & \begin{tabular}{|c|}
\hline Internal \\
Accumulator \\
(Self-Contained)
\end{tabular} & Extenal Accumulator (A/O Tank) & A/O Tank (Re-circulating) & & & \\
\hline \begin{tabular}{l}
CA \(2 \times\) 2-1 \\
CA \(2 \times 2-2\) \\
CA \(2 \times 2-3\) \\
CA \(2 \times 2-4\)
\end{tabular} & \[
\begin{array}{r}
1,600-4,800 \\
4,000-12,000 \\
10,000-30,000 \\
25,000-75,000 \\
\hline
\end{array}
\] & \[
\begin{gathered}
(726-2,177) \\
(1,814-5,443) \\
(4,536-13,608) \\
(11,340-34,019) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 32,000 \\
& (3,616)
\end{aligned}
\] & \[
\begin{gathered}
9,600,000 \\
(1,084,650)
\end{gathered}
\] & \[
\begin{aligned}
& 12,000,000 \\
& (1,355,820)
\end{aligned}
\] & \[
\begin{aligned}
& 15,600,000 \\
& (1,762,564)
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
48-63 \\
(214-280)
\end{gathered}\right.
\] & 0.25 & \[
\begin{gathered}
28.2 \\
(12.79)
\end{gathered}
\] \\
\hline \[
\begin{array}{ll}
\hline \text { CA } 2 \times x & 4-1 \\
\text { CA } 2 & x \\
\text { CA } 2 & 4-2 \\
\text { CA } 2 & 4 \\
\hline
\end{array}
\] & \[
\begin{gathered}
3,200-9,600 \\
8,000-24,000 \\
20,000-60,000 \\
50,000-150,000 \\
\hline
\end{gathered}
\] & \((1,452-4,354)\)
\((3,629-10,886)\)
\((9,072-27,216)\)
\((22,680-68,039)\) & \[
\begin{aligned}
& 64,000 \\
& (7,231)
\end{aligned}
\] & \[
\begin{aligned}
& 12,000,000 \\
& (1,355,820)
\end{aligned}
\] & \[
\begin{aligned}
& 15,000,000 \\
& (1,694,770)
\end{aligned}
\] & \[
\begin{aligned}
& 19,500,000 \\
& (2,203,200)
\end{aligned}
\] & \[
\left|\begin{array}{c}
34-63 \\
(151-280)
\end{array}\right|
\] & 0.50 & \[
\begin{gathered}
32.6 \\
(14.79)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 6 \text { 6-1 } \\
& \text { CA } 2 \times 6 \text { 6-2 } \\
& \text { CA } 2 \times 6 \text { 6-3 } \\
& \text { CA } 2 \times 6 \text {-4 }
\end{aligned}
\] & \[
\begin{aligned}
& 4,800-14,400 \\
& 12,000-36,000 \\
& 30,000-90,000 \\
& 75,000-225,000
\end{aligned}
\] & \((2,117-6,532)\)
\((5,443-16,329)\)
\((13,608-40,823)\)
\((34,019-102,058)\) & \[
\begin{gathered}
96,000 \\
(10,847)
\end{gathered}
\] & \[
\begin{aligned}
& 14,400,000 \\
& (1,626,980)
\end{aligned}
\] & \[
\begin{aligned}
& 18,000,000 \\
& (2,033,730)
\end{aligned}
\] & \[
\begin{aligned}
& 23,500,000 \\
& (2,655,140)
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
34-90 \\
(151-400)
\end{gathered}\right.
\] & 0.60 & \[
\begin{gathered}
37.2 \\
(16.87)
\end{gathered}
\] \\
\hline
\end{tabular}

Note: All dimensions and tolerance values listed in this catalog are nominal and subject to change without prior notice.

\section*{CA and A 2", 3" Bore Series - Heavy Duty Models \\ (CA) Self-Compensating and (A) Adjustable}

\section*{Specifications (continued)...Self-Compensating Models}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{We
Effective Weight Effective (kg)
lbs}} & \multirow[b]{2}{*}{E3
Energy per
Cycle
in lbs (Nm)} & \multicolumn{3}{|l|}{Energy per Hour in Ibs/hour (Nm/hour) E4} & \multirow[b]{2}{*}{\begin{tabular}{l}
Return \\
Force \\
lbs (N)
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Return } \\
\text { Time } \\
\text { sec }
\end{gathered}
\]} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & Internal Accumulator (Self-Contained) & Extenal Accumulator (A/O Tank) & A/O Tank (Re-circulating) & & & \\
\hline \[
\begin{aligned}
& \text { CA } 2 \times 8-1 \\
& \text { CA } 2 \times 8-2 \\
& \text { CA } 2 \times 8-3 \\
& \text { CA } 2 \times 8-4
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 6,400-19,200 \\
16,000-48,000 \\
40,000-120,000 \\
100,000-300,000 \\
\hline
\end{array}
\] & \[
\begin{gathered}
(2,903-8,709) \\
(7,257-21,772) \\
(18,144-54,431) \\
(45,359-136,708) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 128,000 \\
& (14,462)
\end{aligned}
\] & \[
\begin{aligned}
& 16,800,000 \\
& (1,898,150)
\end{aligned}
\] & \[
\begin{aligned}
& 21,000,000 \\
& (2,372,680)
\end{aligned}
\] & \[
\begin{aligned}
& 27,000,000 \\
& (3,050,590)
\end{aligned}
\] & \[
\left|\begin{array}{c}
51-144 \\
(227-641)
\end{array}\right|
\] & 0.70 & \[
\begin{gathered}
42.6 \\
(19.32)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \hline \text { CA } 2 \times 10-1 \\
& \text { CA } 2 \times 10-2 \\
& \text { CA } 2 \times 10-3 \\
& \text { CA } 2 \times 10-4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 8,000-24,000 \\
20,000-60,000 \\
50,000-150,000 \\
125,000-375,000 \\
\hline
\end{array}
\] & \[
\begin{gathered}
(3,629-10,886) \\
(9,072-27,216) \\
(22,680-68,039) \\
(56,700-170,097) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 160,000 \\
& (18,078)
\end{aligned}
\] & \[
\begin{aligned}
& 19,200,000 \\
& (2,169,310)
\end{aligned}
\] & \[
\begin{aligned}
& 24,000,000 \\
& (2,711,640)
\end{aligned}
\] & \[
\begin{aligned}
& 31,000,000 \\
& (3,502,530)
\end{aligned}
\] & \[
\left|\begin{array}{c}
35-101 \\
(156-449)
\end{array}\right|
\] & 0.80 & \[
\begin{gathered}
50.2 \\
(22.77)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 5-1 \\
& \text { CA } 3 \times 5-2 \\
& \text { CA } 3 \times 5-3 \\
& \text { CA } 3 \times 5-4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 6,400-19,200 \\
16,000-48,000 \\
40,000-120,000 \\
100,000-300,000 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline(2,903-8,709) \\
(7,257-21,772) \\
(18,144-54,431) \\
(45,359-136,078) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 125,000 \\
& (14,123)
\end{aligned}
\] & \[
\begin{aligned}
& 20,000,000 \\
& (2,259,700)
\end{aligned}
\] & \[
\begin{aligned}
& 25,000,000 \\
& (2,824,620)
\end{aligned}
\] & \[
\begin{aligned}
& 32,500,000 \\
& (3,672,010)
\end{aligned}
\] & \[
\left|\begin{array}{c}
59-156 \\
(262-694)
\end{array}\right|
\] & 0.60 & \[
\begin{gathered}
63.8 \\
(28.94)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 8-1 \\
& \text { CA } 3 \times 8-2 \\
& \text { CA } 3 \times 8-3 \\
& \text { CA } 3 \times 8-4
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 10,240-30,720 \\
25,600-76,800 \\
64,000-192,000 \\
160,000-480,000 \\
\hline
\end{array}
\] & \begin{tabular}{c}
\((4,645-13,934)\) \\
\((11,612-34,836)\) \\
\((29,030-87,090)\) \\
\((72,575-217,724)\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& 200,000 \\
& (22,597)
\end{aligned}
\] & \[
\begin{aligned}
& 32,000,000 \\
& (3,615,520)
\end{aligned}
\] & \[
\begin{aligned}
& 40,000,000 \\
& (4,519,390)
\end{aligned}
\] & \[
\begin{aligned}
& 52,000,000 \\
& (5,875,210)
\end{aligned}
\] & \[
\left|\begin{array}{c}
62-162 \\
(275-721)
\end{array}\right|
\] & 0.80 & \[
\begin{gathered}
73.6 \\
(33.38)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { CA } 3 \times 12-1 \\
& \text { CA } 3 \times 12-2 \\
& \text { CA } 3 \times 12-3 \\
& \text { CA } 3 \times 12-4
\end{aligned}
\] & \[
\begin{array}{|c|}
15,360-46,080 \\
38,400-115,200 \\
96,000-288,000 \\
240,000-720,000
\end{array}
\] & \[
\begin{array}{|c}
(6,967-20,902) \\
(17,418-52,254) \\
(43,545-130,635) \\
(108,862-326,587)
\end{array}
\] & \[
\begin{aligned}
& 300,000 \\
& (33,896)
\end{aligned}
\] & \[
\begin{aligned}
& 48,000,000 \\
& (5,423,270)
\end{aligned}
\] & \[
\begin{aligned}
& 60,000,000 \\
& (6,779,090)
\end{aligned}
\] & \[
\begin{aligned}
& 78,000,000 \\
& (8,812,820)
\end{aligned}
\] & \[
\left|\begin{array}{c}
60-160 \\
(267-712)
\end{array}\right|
\] & 1.20 & \[
\begin{gathered}
89.4 \\
(40.55)
\end{gathered}
\] \\
\hline
\end{tabular}

Specifications...Adjustable Models
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{We Effective Weight lbs (kg)}} & \multirow[b]{2}{*}{\begin{tabular}{l}
E3 \\
Energy per Cycle in lbs (Nm)
\end{tabular}} & \multicolumn{3}{|l|}{Energy per Hour in lbs/hour (Nm/hour) E4} & \multirow[b]{2}{*}{Return Force Ibs (N)} & \multirow[b]{2}{*}{Return Time sec} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & Internal
Accumulator
(Self-Contained) & \begin{tabular}{|c|}
\hline Extenal \\
Accumulator \\
(A/O Tank)
\end{tabular} & A/O Tank (Re-circulating) & & & \\
\hline A \(2 \times 2\) & 560-170,000 & (254-77,111) & \[
\begin{aligned}
& 32,000 \\
& (3,616)
\end{aligned}
\] & \[
\begin{gathered}
9,600,000 \\
(1,084,650)
\end{gathered}
\] & \[
\begin{aligned}
& 12,000,000 \\
& (1,355,820)
\end{aligned}
\] & \[
\begin{aligned}
& 15,600,000 \\
& (1,762,564)
\end{aligned}
\] & \[
\begin{gathered}
48-63 \\
(214-280)
\end{gathered}
\] & 0.25 & \[
\begin{gathered}
31.5 \\
(14.29)
\end{gathered}
\] \\
\hline A \(2 \times 4\) & 510-160,000 & \((231-72,576)\) & \[
\begin{aligned}
& 80,000 \\
& (9,039)
\end{aligned}
\] & \[
\begin{aligned}
& 12,000,000 \\
& (1,355,820)
\end{aligned}
\] & \[
\begin{aligned}
& 15,000,000 \\
& (1,694,770)
\end{aligned}
\] & \[
\begin{aligned}
& 19,500,000 \\
& (2,203,200)
\end{aligned}
\] & \[
\begin{gathered}
34-63 \\
(151-280)
\end{gathered}
\] & 0.50 & \[
\begin{gathered}
36.9 \\
(16.74)
\end{gathered}
\] \\
\hline A \(2 \times 6\) & 570-190,000 & \((259-86,183)\) & \[
\begin{aligned}
& 120,000 \\
& (13,558)
\end{aligned}
\] & \[
\begin{aligned}
& 14,400,000 \\
& (1,626,980)
\end{aligned}
\] & \[
\begin{aligned}
& 18,000,000 \\
& (2,033,730)
\end{aligned}
\] & \[
\begin{aligned}
& 23,500,000 \\
& (2,655,140)
\end{aligned}
\] & \[
\begin{array}{c|}
\hline 34-90 \\
(151-400)
\end{array}
\] & 0.60 & \[
\begin{gathered}
42.6 \\
(19.32)
\end{gathered}
\] \\
\hline A \(2 \times 8\) & 580-200,000 & (263-90,719) & \[
\begin{aligned}
& 170,000 \\
& (19,207)
\end{aligned}
\] & \[
\begin{aligned}
& 16,800,000 \\
& (1,898,150)
\end{aligned}
\] & \[
\begin{aligned}
& 21,000,000 \\
& (2,372,680)
\end{aligned}
\] & \[
\begin{aligned}
& 27,000,000 \\
& (3,050,590)
\end{aligned}
\] & \[
\begin{gathered}
51-144 \\
(227-641)
\end{gathered}
\] & 0.70 & \[
\begin{gathered}
49.1 \\
(22.27)
\end{gathered}
\] \\
\hline A \(2 \times 10\) & 720-250,000 & (3279-113,399) & \[
\begin{aligned}
& 210,000 \\
& (23,727)
\end{aligned}
\] & \[
\begin{aligned}
& 19,200,000 \\
& (2,169,310)
\end{aligned}
\] & \[
\begin{aligned}
& 24,000,000 \\
& (2,711,640)
\end{aligned}
\] & \[
\begin{aligned}
& 31,000,000 \\
& (3,502,530)
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 35-101 \\
(156-449)
\end{array}
\] & 0.80 & \[
\begin{gathered}
57.8 \\
(26.22)
\end{gathered}
\] \\
\hline A \(3 \times 5\) & 1,050-340,000 & (476-154,223) & \[
\begin{aligned}
& \hline 140,000 \\
& (15,818)
\end{aligned}
\] & \[
\begin{aligned}
& 20,000,000 \\
& (2,259,700)
\end{aligned}
\] & \[
\begin{aligned}
& 25,000,000 \\
& (2,824,620)
\end{aligned}
\] & \[
\begin{aligned}
& 32,500,000 \\
& (3,672,010)
\end{aligned}
\] & \[
\begin{array}{c|}
\hline 59-156 \\
(262-694)
\end{array}
\] & 0.60 & \[
\begin{gathered}
\hline 72.1 \\
(32.70)
\end{gathered}
\] \\
\hline A \(3 \times 8\) & 1,200-400,000 & (544-181,439) & \[
\begin{aligned}
& \hline 250,000 \\
& (28,246)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 32,000,000 \\
& (3,615,520)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 40,000,000 \\
& (4,519,390)
\end{aligned}
\] & \[
\begin{aligned}
& 52,000,000 \\
& (5,875,210)
\end{aligned}
\] & \[
\begin{gathered}
62-162 \\
(275-721)
\end{gathered}
\] & 0.80 & \[
\begin{gathered}
84.9 \\
(38.51)
\end{gathered}
\] \\
\hline A \(3 \times 12\) & 1,350-450,000 & (612-204,119) & \[
\begin{aligned}
& \hline 390,000 \\
& (44,064)
\end{aligned}
\] & \[
\begin{aligned}
& 48,000,000 \\
& (5,423,270)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 60,000,000 \\
& (6,779,090)
\end{aligned}
\] & \[
\begin{aligned}
& 78,000,000 \\
& (8,812,820)
\end{aligned}
\] & \[
\begin{gathered}
60-160 \\
(267-712)
\end{gathered}
\] & 1.20 & \[
\begin{gathered}
\hline 105.0 \\
(47.63)
\end{gathered}
\] \\
\hline
\end{tabular}

CA and A 2", 3" Bore Series - Heavy Duty Models
(CA) Self-Compensating and (A) Adjustable

\section*{Ordering Information - Self Compensating Models}

\section*{Ordering Information - Adjustable Models}

Note: A no button option is available on the 3 " Bore only as a special.

\section*{CA 4" Bore Series - Heavy Duty Models Self-Compensating}

Standard Mount

Side-Foot Mount

\section*{Clevis Mount}

\section*{Technical Data}

Impact velocity range: 1 to \(16.5 \mathrm{ft} / \mathrm{sec}(0.30\) to \(5 \mathrm{~m} / \mathrm{sec}\))
Operating Temperature: \(10^{\circ}\) to \(150^{\circ} \mathrm{F}\left(-12^{\circ}\right.\) to \(\left.66^{\circ} \mathrm{C}\right)\)
Mechanical stop:
2", 3" bore: Must be provided .09 inch (2.3 mm) before end of stroke.
Oil type: ATF

\section*{CA 4" Bore Series - Heavy Duty Models Self-Compensating}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Dimensions IN INCHES (MILLIMETERS)} \\
\hline Size & Stroke & A & B & D & H & L & S & C5 & C10 & F2 & F3 \\
\hline \begin{tabular}{l}
CA \(4 \times 6\) \\
CSA \(4 \times 6\) \\
CAA \(4 \times 6\) \\
CNA \(4 \times 6\)
\end{tabular} & \[
\begin{gathered}
6.00 \\
(152.4)
\end{gathered}
\] & \[
\begin{gathered}
28.21 \\
(716.5) \\
26.21 \\
(665.7) \\
\mathrm{N} / \mathrm{A}
\end{gathered}
\] & \[
\begin{gathered}
10.96 \\
(278.4) \\
8.96 \\
(227.6) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
2.12 \\
(53.8)
\end{gathered}
\] & \[
\begin{gathered}
4.50 \\
(114.3)
\end{gathered}
\] & \[
\begin{gathered}
26.71 \\
(678.4) \\
24.71 \\
(678.4) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
9.46 \\
(240.3) \\
7.46 \\
(188.0) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
33.03 \\
(839.0) \\
\\
31.03 \\
(788.2)
\end{gathered}
\] & \[
\begin{gathered}
12.90 \\
(327.7) \\
\\
10.90 \\
(276.9)
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{gathered}
17.50 \\
(447.5)
\end{gathered}
\] \\
N/A
\end{tabular} & \[
\begin{gathered}
10.90 \\
(256.3) \\
8.09 \\
(205.5) \\
\text { N/A }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
CA \(4 \times 8\) \\
CSA \(4 \times 8\) \\
CAA \(4 \times 8\) \\
CNA \(4 \times 8\)
\end{tabular} & \[
\begin{gathered}
8.00 \\
(203.2)
\end{gathered}
\] & \[
\begin{gathered}
32.31 \\
(818.1) \\
30.21 \\
(767.3) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
12.96 \\
(329.2) \\
10.96 \\
(278.4) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
2.12 \\
(53.8)
\end{gathered}
\] & \[
\begin{gathered}
4.50 \\
(114.3)
\end{gathered}
\] & \[
\begin{gathered}
30.71 \\
(780.0) \\
28.71 \\
(729.2) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
11.46 \\
(291.1) \\
9.46 \\
(240.3) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
37.03 \\
(940.6) \\
\\
35.03 \\
(889.8)
\end{gathered}
\] & \[
\begin{gathered}
14.90 \\
(378.5) \\
\\
12.90 \\
(327.7)
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{gathered}
19.50 \\
(495.3)
\end{gathered}
\] \\
N/A
\end{tabular} & \[
\begin{gathered}
12.09 \\
(307.1) \\
10.09 \\
(256.3) \\
\text { N/A }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
CA \(4 \times 16\) \\
CSA \(4 \times 16\) \\
CAA \(4 \times 16\) \\
CNA \(4 \times 16\)
\end{tabular} & \[
\begin{gathered}
16.00 \\
(406.4)
\end{gathered}
\] & \[
\begin{gathered}
51.21 \\
(1,300.7) \\
46.21 \\
(1,173.7) \\
\mathrm{N} / \mathrm{A}
\end{gathered}
\] & \[
\begin{gathered}
23.96 \\
(608.6) \\
18.96 \\
(481.6) \\
\text { N/A }
\end{gathered}
\] & \[
\begin{gathered}
2.50 \\
(63.5)
\end{gathered}
\] & \[
\begin{gathered}
5.00 \\
(127.0)
\end{gathered}
\] & \[
\begin{gathered}
49.71 \\
(1,262.6) \\
44.71 \\
(1,135.6) \\
\mathrm{N} / \mathrm{A}
\end{gathered}
\] & \[
\begin{gathered}
22.46 \\
(570.5) \\
17.46 \\
(443.5) \\
\mathrm{N} / \mathrm{A}
\end{gathered}
\] & \[
\begin{gathered}
56.03 \\
(1,423.2) \\
\\
51.03 \\
(1,296.2)
\end{gathered}
\] & \[
\begin{gathered}
25.90 \\
(657.9) \\
\\
20.90 \\
(530.9)
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{gathered}
27.50 \\
(698.5)
\end{gathered}
\] \\
N/A
\end{tabular} & \[
\begin{gathered}
23.09 \\
(586.5) \\
18.09 \\
(459.5) \\
\text { N/A }
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Specifications} \\
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{We Effective Weight lbs (kg)}} & \multirow[b]{2}{*}{\begin{tabular}{l}
E3 \\
Energy per Cycle in lbs (Nm)
\end{tabular}} & \multicolumn{2}{|l|}{Energy per Hour in lbs/hour (Nm/hour) E4} & \multirow[b]{2}{*}{Return Force lbs (N)} & \multirow[b]{2}{*}{Return Time sec} & \multirow[b]{2}{*}{Shipping Weight lbs (kg)} \\
\hline & & & & Internal Accumulator (Self-Contained) & Extenal Accumulator (A/O Tank) & & & \\
\hline \[
\begin{aligned}
& 4 \times 6-3 \\
& 4 \times 6-5 \\
& 4 \times 6-7
\end{aligned}
\] & \[
\begin{array}{r}
8,000-19,000 \\
19,000-41,000 \\
41,000-94,000 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
(3,600-8,600) \\
(8,600-18,600) \\
(18,600-42,700) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 420,000 \\
& (47,500)
\end{aligned}
\] & \[
\begin{aligned}
& 27,000,000 \\
& (3,000,000)
\end{aligned}
\] & \[
\begin{aligned}
& 45,000,000 \\
& (5,100,000)
\end{aligned}
\] & \[
\begin{gathered}
108-222 \\
(480-1,000)
\end{gathered}
\] & Consult Factory & \[
\begin{aligned}
& 132 \\
& (60)
\end{aligned}
\] \\
\hline \[
\begin{array}{|lll}
4 \times 8-3 \\
4 \times 8-5 \\
4 \times 8-7
\end{array}
\] & \[
\begin{array}{|c|}
\hline 11,000-25,000 \\
25,000-55,000 \\
55,000-125,000 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (5,000-11,400) \\
& (11,400-25,000) \\
& (25,000-57,000)
\end{aligned}
\] & \[
\begin{aligned}
& 560,000 \\
& (63,300)
\end{aligned}
\] & \[
\begin{aligned}
& 30,000,000 \\
& (3,400,000)
\end{aligned}
\] & \[
\begin{aligned}
& 50,000,000 \\
& (5,600,000)
\end{aligned}
\] & \[
\begin{gathered}
71-222 \\
(310-1,000)
\end{gathered}
\] & Consult Factory & \[
\begin{aligned}
& 150 \\
& (68)
\end{aligned}
\] \\
\hline \[
\begin{array}{|lll|}
\hline 4 & \times & 16-3 \\
4 & \times & 16-5 \\
4 & x & 16-7
\end{array}
\] & \[
\begin{array}{|c|}
\hline 22,000-50,000 \\
50,000-110,000 \\
110,000-250,000
\end{array}
\] & \[
\begin{array}{|c|}
\hline(10,000-23,000) \\
(23,000-50,000) \\
(50,000-114,000)
\end{array}
\] & \[
\begin{aligned}
& 1,120,000 \\
& (126,500)
\end{aligned}
\] & \[
\begin{aligned}
& 50,000,000 \\
& (5,600,000)
\end{aligned}
\] & \[
\begin{aligned}
& 85,000,000 \\
& (9,600,000)
\end{aligned}
\] & Consult Factory & Consult Factory & \[
\begin{gathered}
321 \\
(146)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Ordering Information}

Miniature Shock Absorber Accessories Mounting Blocks

\section*{Mounting Block}

\(L_{\text {Mu Diantere Thu } 4 \text { Hots }}\)

Side load adapters are available for select models, see pages 48 and 49.

\section*{Miniature Shock Absorber Accessories}

StopLight \({ }^{T M}\)

Mounting Block in INCHES (MILLIMETERS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Used With & Part \# & T & H & J & M 13 & M 14 & M 15 & M 16 & M17 & M 18 & M19 & M20 & M21 & M22 & M23 & M24 \\
\hline MA 150 MC 150* SC 190 & 250-0377 & 9/16-18 UNF & \multirow[t]{2}{*}{\[
-.47
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.43 \\
(10.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.75 \\
(19.0)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.38 \\
(22.3)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.88 \\
(22.3)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
1.25 \\
(31.8)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.63 \\
(15.9)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.57 \\
(14.5)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
.44 \\
(11.1)
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.88 \\
(22.2)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.19 \\
(4.7)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
.38 \\
(9.5)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& .180 \\
& (4.6)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
.315 \\
\text { (8.0) }
\end{array}
\]} \\
\hline \[
\begin{aligned}
& \hline \text { MC 150M* } \\
& \text { SC 190M }
\end{aligned}
\] & 250-0378 & M14x1.5 & & & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { MC 225* } \\
& \text { MA 225 } \\
& \text { MVC } 225 \\
& \text { SC } 300
\end{aligned}
\] & 250-0379 & \begin{tabular}{l}
3/4-16 \\
UNF
\end{tabular} & \multirow[b]{2}{*}{\[
\begin{gathered}
.66 \\
(16.8)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.43 \\
(10.9)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\left\lvert\, \begin{gathered}
.94 \\
(23.8)
\end{gathered}\right.
\]} & \multirow[b]{2}{*}{\[
.47
\]} & \multirow[b]{2}{*}{\[
\left(\begin{array}{c}
.94 \\
(23.8)
\end{array}\right.
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
1.56 \\
(39.6)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.78 \\
(19.8)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.63 \\
(16.0)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.55 \\
(14.0)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
1.10 \\
(28.0)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.24 \\
(6.0)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.47 \\
(12.0)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& .216 \\
& (5.5)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
.394 \\
(10.0)
\end{gathered}
\]} \\
\hline MC 225M
MA 225M
MVC 225M
SC 300M & 250-0380 & M20x1.5 & & & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
MC 600* \\
MA 600 \\
MVC 600 \\
MA 900 \\
MVC 900 \\
SC 650 \\
SC 925
\end{tabular} & 250-0381 & \[
\begin{aligned}
& 1-12 \\
& \text { UNF }
\end{aligned}
\] & 90 & 43 & 1.18 & 59 & 1.00 & 1.75 & . 88 & 63 & . 63 & 1.26 & . 31 & 63 & 216 & 394 \\
\hline MC 600M* MA 600M MVC 600M MA 900M MVC 900M SC 650M SC 925M & 250-0382 & M25x1.5 & (22.9) & (10.9) & (30.0) & (15.0) & (25.4) & (44.5) & (22.3) & (16.0) & (16.0) & (32.0) & (8.0) & (16.0) & (5.5) & (10.0) \\
\hline
\end{tabular}

StopLight \({ }^{T M}\) Switches are available in both NPN and PNP styles. Part numbers are 250-3 NPN and \(250-3 P N P\), respectively. The switches can be used with any StopLight mounting blocks.
* A complete StopLight assembly includes mounting block, proximity switch and steel button. Use the table below to order MC Series buttons. Steel buttons are an integral part of series MA and \(S C^{2}\) and MVC units. Shock absorbers are ordered separately.
\begin{tabular}{|lc|}
\hline Model & Steel Button Part \# \\
\hline MA 150 & \(250-0383\) \\
MC 150, MC 150M & \(250-0111\) \\
MC 225, MC 225M & \(250-0112\) \\
MC 600, MC 600M & \(250-0113\) \\
\hline
\end{tabular}

\section*{Specifications}

250-3 NPN
NPN-type Proximity Switch

250-3 PNP PNP-type Proximity Switch

Supply Voltage: 10 to 27 VDC Ripple p to p 10\% max
Current Consumption: \(15 \mathrm{~mA} \max\) (at 24 VDC)
Control Output: • 3-Wire Output: 100mA max
- Voltage Impression: 30 VDC max
- Residual Voltage: 1 VDC max
\begin{tabular}{rl}
Operator Indicator: & \begin{tabular}{l}
Red LED. Power off \(=\) dark. Stand \(\mathrm{By}=\) Dim Light. \\
\\
\\
Detection \(=\) Bright Light.
\end{tabular} \\
Operating Temperature: & \(14^{\circ}\) to \(140^{\circ} \mathrm{F},-10^{\circ}\) to \(60^{\circ} \mathrm{C}\) \\
& (At holding: \(86^{\circ}\) to \(176^{\circ} \mathrm{F} ; 30^{\circ}\) to \(\left.80^{\circ} \mathrm{C}\right)\) \\
Humidity: & 45 to \(85 \% \mathrm{RH}\) (At holding: 35 to \(95 \% \mathrm{RH})\) \\
Variation Due To & \(\pm 20 \%\) max of detecting distance at \(68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)\) \\
Temperature Fluctuation: & with a temperature range of \(14^{\circ}\) to \(140^{\circ} \mathrm{F}\left(-10^{\circ}\right.\) to \(\left.60^{\circ} \mathrm{C}\right)\) \\
Variation Due To & \(\pm 5 \%\) max of detecting distance at \(12 / 24 / \mathrm{VDC}\) \\
Voltage Fluctuation: & when operated within 10 to 27 VDC \\
Residual Voltage: & 1 V max (Load current at 100 mA\()\) \\
Insulation Resistance: & \(10 \mathrm{M} \Omega\) min (at 500 VDC\()\) \\
Dielectric Resistance: & \(1,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}\) for 1 minute \\
Degree of Protection: & IP 67 (IEC144)
\end{tabular}

Miniature Shock Absorber Side Load Adapters
For Side Load in Excess of \(3^{\circ}\)

With side load impact angles of more than \(3^{\circ}\) the operating lifetime of the shock absorber reduces rapidly due to increased wear of the rod bearings. The optional side load adapter provides a long lasting solution.

Material: Threaded body and plunger, hardened high tensile steel

Problem: Rotary motion of the striking surface creates side load, which develops a bending moment on the piston rod. This can bend the rod in some cases. In all cases, side load will reduce seal and bearing life.

Solution: Use side load adapter.
Formula: \(\alpha=\tan ^{-1}\left(\frac{\mathrm{~s}}{2 \cdot R \mathrm{~s}}\right) \quad \mathrm{R}_{\text {smin }}=\frac{\mathrm{s}}{2 \cdot \tan \alpha \max }\)

Example: s =. \(98(25 \mathrm{~mm}) \quad \alpha \max =25^{\circ}\) (adapter 250-0560)
\(R_{s}=3.94(100 \mathrm{~mm})\)
\(R_{\text {smin }}=\frac{.98}{2 \cdot \tan 25}\)

\(\alpha=\tan ^{-1}\left(\frac{.98}{2 \cdot 3.94}\right)\)
\[
\mathrm{R}_{\text {smin }}=1.05(27 \mathrm{~mm})
\]
\(\alpha=(7.09)^{\circ}\)
\(\alpha=\) angle of impact
\(\alpha \max =\quad\) maximum angle of impact
\(\mathrm{s}=\) stroke
\(R_{s}=\) radius
\(R_{\text {smin }}=\) minimum \(r\)

\section*{Miniature Shock Absorber Side Load Adapters}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Dimensions IN INCHES (MILLIMETERS)} \\
\hline MC, MVC Series Model & SC Series Model & MA Series Model & Side Load Adapter & T & \(\mathrm{d}_{1}\) & \(\mathrm{d}_{2}\) & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) & SW & Maximum Side Load (\(\alpha\)) \\
\hline MC 150M & N/A & MA 150M & 250-0558 & M14 \(\times 1.5\) & \[
\begin{aligned}
& 0.70 \\
& \text { (18) }
\end{aligned}
\] & \[
\begin{gathered}
0.35 \\
(9) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.31 \\
(8)
\end{gathered}
\] & \[
\begin{gathered}
0.15 \\
(4)
\end{gathered}
\] & \[
\begin{aligned}
& \hline 0.78 \\
& (20)
\end{aligned}
\] & \[
\begin{gathered}
0.49 \\
(12.5) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.62 \\
& (16)
\end{aligned}
\] & \(25^{\circ}\) \\
\hline MC 225M & N/A & N/A & 250-0559 & M20 x 1.5 & \[
\begin{aligned}
& \hline 0.94 \\
& (24) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.47 \\
& (12)
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& (10) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.15 \\
(4) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline 0.78 \\
& (20) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.49 \\
(12.5)
\end{gathered}
\] & \[
\begin{aligned}
& 0.86 \\
& (22)
\end{aligned}
\] & \(25^{\circ}\) \\
\hline MC 600M & N/A & N/A & 250-0560 & M25 x 1.5 & \[
\begin{aligned}
& 1.18 \\
& (30)
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& (16)
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\] & \[
\begin{gathered}
0.23 \\
(6)
\end{gathered}
\] & \[
\begin{aligned}
& 1.50 \\
& \text { (38) }
\end{aligned}
\] & \[
\begin{aligned}
& 0.98 \\
& (25)
\end{aligned}
\] & \[
\begin{aligned}
& 1.06 \\
& \text { (27) }
\end{aligned}
\] & \(25^{\circ}\) \\
\hline N/A & SC190M-880* & N/A & 250-0080 & M14 \(\times 1.5\) & \[
\begin{aligned}
& 0.70 \\
& \text { (18) }
\end{aligned}
\] & \[
\begin{gathered}
0.35 \\
(9)
\end{gathered}
\] & \[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\] & \[
\begin{gathered}
0.15 \\
(4)
\end{gathered}
\] & \[
\begin{aligned}
& 1.02 \\
& (26)
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& (16)
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& (16)
\end{aligned}
\] & \(25^{\circ}\) \\
\hline \[
\begin{gathered}
\text { MVC } \\
-880^{*}
\end{gathered}
\] & \[
\begin{array}{r}
\text { SC 300M } \\
-880^{*}
\end{array}
\] & \[
\begin{array}{r}
\text { MA 225M } \\
-880^{*}
\end{array}
\] & 250-0081 & M20 x 1.5 & \[
\begin{aligned}
& 0.94 \\
& (24)
\end{aligned}
\] & \[
\begin{aligned}
& 0.47 \\
& (12)
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\] & \[
\begin{gathered}
0.15 \\
(4)
\end{gathered}
\] & \[
\begin{aligned}
& 1.25 \\
& \text { (32) }
\end{aligned}
\] & \[
\begin{aligned}
& 0.75 \\
& (19)
\end{aligned}
\] & \[
\begin{aligned}
& 0.86 \\
& (22)
\end{aligned}
\] & \(25^{\circ}\) \\
\hline \[
\begin{array}{r}
\text { MVC 600M } \\
-880^{*}
\end{array}
\] & \[
\begin{gathered}
\text { SC 650M } \\
-880^{*}
\end{gathered}
\] & \[
\begin{aligned}
& \text { MA 600M } \\
& -880^{\star}
\end{aligned}
\] & 250-0082 & M \(25 \times 1.5\) & \[
\begin{aligned}
& 1.18 \\
& (30)
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& (16)
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\] & \[
\begin{gathered}
0.23 \\
(6)
\end{gathered}
\] & \[
\begin{aligned}
& 1.50 \\
& (38) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.98 \\
& (25)
\end{aligned}
\] & \[
\begin{aligned}
& 1.06 \\
& (27)
\end{aligned}
\] & \(25^{\circ}\) \\
\hline
\end{tabular}
* The -880 = No button, standard rod

Note: Side load not to exceed 5". Maximum side load depends on application, shock absorber model, and stroke length.

Note: The side load adapter can only be installed on select metric shock absorbers without rod end button.

\section*{Magnum Series Group Accessories}

\section*{Square and Rectangular Flanges in inches (MILLIMETERS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Used With & Square Flange & Rect Flange & T & M1 & M2 & M3 & M4 & M5 & M6 \\
\hline \begin{tabular}{l}
MA 33 \\
ML 33 \\
MC 33
\end{tabular} & & 250-0016 & \[
\begin{gathered}
\text { 1-1/4-12 } \\
\text { UNF }
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.5)
\end{aligned}
\] & \[
\begin{aligned}
& 219 \\
& (5.6)
\end{aligned}
\] & \[
\begin{gathered}
1.12 \\
(28.4)
\end{gathered}
\] & \[
\begin{gathered}
1.62 \\
(41.2)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
MA 33M \\
ML 33M \\
MC 33M
\end{tabular} & N/A & 250-0293 & M33x1.5 & \[
\begin{gathered}
1.62 \\
(41.1)
\end{gathered}
\] & \[
\begin{gathered}
2.12 \\
(53.8)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.5)
\end{aligned}
\] & \[
\begin{array}{r}
278 \\
(7.1) \\
\hline
\end{array}
\] & \[
\begin{gathered}
1.10 \\
(28.0)
\end{gathered}
\] & \[
\begin{gathered}
1.65 \\
(42.0)
\end{gathered}
\] \\
\hline MA 36 ML 36 MC 36 & & 250-0633 & \[
\begin{gathered}
1-3 / 8-12 \\
\text { UNF }
\end{gathered}
\] & \[
\begin{gathered}
1.75 \\
(44.4)
\end{gathered}
\] & \[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.5)
\end{aligned}
\] & \[
\begin{aligned}
& .219 \\
& (5.6)
\end{aligned}
\] & \[
\begin{gathered}
1.12 \\
(28.4)
\end{gathered}
\] & \[
\begin{gathered}
1.62 \\
(41.2)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
MA 36M \\
ML 36M \\
MC 36M \\
MA 45 \\
ML 45 \\
MC 45
\end{tabular} & N/A
\(250-0023\) & \[
\begin{gathered}
\text { N/A } \\
250-0024
\end{gathered}
\] & \[
\begin{gathered}
\text { N/A } \\
\text { 1-3/4-12 } \\
\text { UN }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} / \mathrm{A} \\
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
\text { N/A } \\
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} / \mathrm{A} \\
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} / \mathrm{A} \\
0.34 \\
(8.7)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} / \mathrm{A} \\
1.62 \\
(41.2)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} / \mathrm{A} \\
2.38 \\
(60.5)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
MA 45M \\
ML 45M \\
MC 45M
\end{tabular} & 250-0298 & 250-0299 & M \(45 \times 1.5\) & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.35 \\
& (8.8)
\end{aligned}
\] & \[
\begin{gathered}
1.62 \\
(41.2)
\end{gathered}
\] & \[
\begin{gathered}
2.38 \\
(60.5)
\end{gathered}
\] \\
\hline MA 64 ML 64 MC 64 & 250-0028 & N/A & \[
\begin{gathered}
2-1 / 2-12 \\
\text { UN }
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & N/A & \[
\begin{gathered}
0.62 \\
(15.9)
\end{gathered}
\] & \[
\begin{gathered}
0.41 \\
(10.4)
\end{gathered}
\] & \[
\begin{gathered}
2.75 \\
(69.6) \\
\hline
\end{gathered}
\] & N/A \\
\hline \begin{tabular}{l}
MA 64M \\
ML 64M \\
MC 64M
\end{tabular} & 250-0302 & N/A & M64x2 & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & N/A & \[
\begin{gathered}
0.62 \\
(15.9)
\end{gathered}
\] & \[
\begin{gathered}
0.41 \\
(10.4)
\end{gathered}
\] & \[
\begin{gathered}
2.75 \\
(69.6)
\end{gathered}
\] & N/A \\
\hline
\end{tabular}

Square Flange

Rectangular Flange

Hard metric stop bars available upon request.

Stop bars come in pairs, two bars per package.

Stop Bars in inches (Millimeters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Used With & Part \# & S10 & S11 & S12 & S13 & S14 & S15 & S16 \\
\hline \begin{tabular}{l}
MA 33 \\
ML 33 \\
MC 33
\end{tabular} & 250-0426 & \[
\begin{gathered}
1.28 \\
(32.5)
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.19 \\
& (4.8)
\end{aligned}
\] & \[
\begin{gathered}
1.12 \\
(28.4)
\end{gathered}
\] & \[
\begin{aligned}
& 10-32 \\
& \text { UNF }
\end{aligned}
\] & N/A \\
\hline \begin{tabular}{l}
MA 33M \\
ML 33M \\
MC 33M
\end{tabular} & 250-0427 & \[
\begin{gathered}
1.28 \\
(32.5)
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.19 \\
& (4.8)
\end{aligned}
\] & \[
\begin{gathered}
1.12 \\
(28.4)
\end{gathered}
\] & M5x0.8 & N/A \\
\hline \begin{tabular}{l}
MA 36 \\
ML 36 \\
MC 36
\end{tabular} & 250-0426 & \[
\begin{gathered}
1.28 \\
(32.5)
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.19 \\
& (4.8)
\end{aligned}
\] & \[
\begin{gathered}
1.12 \\
(28.4)
\end{gathered}
\] & \[
\begin{aligned}
& 10-32 \\
& \text { UNF }
\end{aligned}
\] & N/A \\
\hline \[
\begin{array}{|l}
\hline \text { MA 36M } \\
\text { ML 36M } \\
\text { MC 36M } \\
\hline
\end{array}
\] & N/A \\
\hline \begin{tabular}{l}
MA 45 \\
ML 45 \\
MC 45
\end{tabular} & 250-0428 & \[
\begin{gathered}
1.03 \\
(26.2)
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
0.63 \\
(16.0)
\end{gathered}
\] & \[
\begin{aligned}
& 0.31 \\
& (7.9)
\end{aligned}
\] & \[
\begin{gathered}
1.62 \\
(41.3)
\end{gathered}
\] & \[
\begin{gathered}
5 / 16-24 \\
\text { UNF }
\end{gathered}
\] & N/A \\
\hline MA 45M ML 45M MC 45M & 250-0639 & \[
\begin{gathered}
1.03 \\
(26.2)
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
0.63 \\
(16.0)
\end{gathered}
\] & \[
\begin{aligned}
& 0.31 \\
& (7.9)
\end{aligned}
\] & \[
\begin{gathered}
1.62 \\
(41.3)
\end{gathered}
\] & M8x1.25 & N/A \\
\hline \begin{tabular}{l}
MA 6450 \\
MA 64100 \\
ML 6425 \\
ML 6450 \\
MC 6450 \\
MC 64100
\end{tabular} & 250-0430 & \[
\begin{gathered}
1.44 \\
(36.5)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{gathered}
2.75 \\
(69.8)
\end{gathered}
\] & \[
\begin{gathered}
3 / 8-24 \\
\text { UNF }
\end{gathered}
\] & \[
\begin{gathered}
1.37 \\
(34.8)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
MA 6450M \\
MA 64100M \\
ML 6425M \\
ML 6450M \\
MC 6450M \\
MC 64100M
\end{tabular} & 250-0640 & \[
\begin{gathered}
1.44 \\
(36.5)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{gathered}
2.75 \\
(69.8)
\end{gathered}
\] & M10x1.5 & \[
\begin{gathered}
1.37 \\
(34.8)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { MA } 64150 \\
& \text { MC } 64150
\end{aligned}
\] & 250-0432 & \[
\begin{gathered}
2.31 \\
(57.7)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{gathered}
2.75 \\
(69.8)
\end{gathered}
\] & \[
\begin{aligned}
& 3 / 8-24 \\
& \text { UNF }
\end{aligned}
\] & \[
\begin{gathered}
1.37 \\
(34.8)
\end{gathered}
\] \\
\hline MA 64150M MC 64150M & 250-0641 & \[
\begin{gathered}
2.31 \\
(57.7)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{gathered}
2.75 \\
(69.8)
\end{gathered}
\] & M10x1.5 & \[
\begin{gathered}
1.37 \\
(34.8)
\end{gathered}
\] \\
\hline MAA 64150 MCA 64150 & 250-0435 & \[
\begin{gathered}
2.18 \\
(55.4)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{gathered}
2.75 \\
(69.8)
\end{gathered}
\] & \[
\begin{aligned}
& 3 / 8-24 \\
& \text { UNF }
\end{aligned}
\] & \[
\begin{gathered}
1.37 \\
(34.8)
\end{gathered}
\] \\
\hline MAA 64150M MCA 64150M & 250-0649 & \[
\begin{gathered}
2.18 \\
(55.4)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
0.50 \\
(12.7)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{gathered}
2.75 \\
(69.8)
\end{gathered}
\] & M10x1.5 & \[
\begin{gathered}
1.37 \\
(34.8)
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Magnum Series Group Accessories}

\section*{Flanged Stop Collars in inches (Millimeters)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Used With & Part \# & T & S1 & S2 & S3 & S4 & S5 & S6 & S7 \\
\hline MA 33 ML 33 MC 33 & 250-0070 & \[
\begin{gathered}
1-1 / 4-12 \\
\text { UNF }
\end{gathered}
\] & \[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{gathered}
2.50 \\
(63.5)
\end{gathered}
\] & \[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\] & \[
\begin{gathered}
0.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline MA 33M ML 33M MC 33M & 250-0071 & M33x1.5 & \[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{gathered}
2.50 \\
(63.5)
\end{gathered}
\] & \[
\begin{gathered}
2.00 \\
(50.8)
\end{gathered}
\] & \[
\begin{gathered}
0.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MA 36 \\
ML 36 \\
MC 36 \\
MA 36M \\
ML 36M \\
MC 36M
\end{tabular} & N/A \\
\hline \begin{tabular}{l}
MA 45 \\
ML 45 \\
MC 45
\end{tabular} & 250-0072 & \[
\begin{gathered}
1-3 / 4-12 \\
U N
\end{gathered}
\] & \[
\begin{gathered}
1.85 \\
(47.0)
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
3.25 \\
(82.6)
\end{gathered}
\] & \[
\begin{gathered}
2.75 \\
(69.6)
\end{gathered}
\] & \[
\begin{gathered}
0.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MA 45M \\
ML 45M \\
MC 45M
\end{tabular} & 250-0073 & M45x1.5 & \[
\begin{gathered}
1.85 \\
(47.0)
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
3.25 \\
(82.6)
\end{gathered}
\] & \[
\begin{gathered}
2.75 \\
(69.9)
\end{gathered}
\] & \[
\begin{gathered}
0.88 \\
(22.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MA 6450 \\
MA 64100 \\
ML 6425 \\
ML 6450 \\
MC 6450 \\
MC 64100 \\
\hline
\end{tabular} & 250-0074 & \[
\begin{gathered}
2-1 / 2-12 \\
\text { UN }
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{gathered}
4.25 \\
(108.0)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline MA 6450M MA 64100M ML 6425M ML 6450M MC 6450M MC 64100M & 250-0075 & M64x2 & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{gathered}
4.25 \\
(108.0)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { MA } 64150 \\
& \text { MC } 64150
\end{aligned}
\] & 250-0076 & \[
\begin{gathered}
2-1 / 2-12 \\
\text { UN }
\end{gathered}
\] & \[
\begin{gathered}
3.13 \\
(79.4)
\end{gathered}
\] & \[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 4.25 \\
(108.0)
\end{array}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline MA 64150M MC 64150M & 250-0077 & M64x2 & \[
\begin{gathered}
3.13 \\
(79.4)
\end{gathered}
\] & \[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{gathered}
4.25 \\
(108.0)
\end{gathered}
\] & \[
\begin{gathered}
3.50 \\
(88.9)
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
(25.4)
\end{gathered}
\] & \[
\begin{aligned}
& 0.38 \\
& (9.7)
\end{aligned}
\] & \[
\begin{aligned}
& 0.282 \\
& (7.16)
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Lock Nuts & \multicolumn{4}{|l|}{IN INCHES (MILLIMETERS)} \\
\hline Used With & Part \# & T & W & N3 \\
\hline MA 33 ML 33 MC 33 & 250-0038 & \[
\begin{gathered}
1-1 / 4-12 \\
\mathrm{UN}
\end{gathered}
\] & \[
\begin{gathered}
1.50 \\
(38.1)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] \\
\hline MA 33M ML 33M MC 33M & 250-0292 & M \(33 \times 1.5\) & \[
\begin{gathered}
1.56 \\
(39.6)
\end{gathered}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] \\
\hline MA 36 ML 36 MC 36 & 250-0631 & \[
\begin{gathered}
1-3 / 8-12 \\
\text { UNF }
\end{gathered}
\] & \[
\begin{array}{r}
1.75 \\
(44.5)
\end{array}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] \\
\hline MA 36M ML 36M MC 36M & 250-0537 & M36x1.5 & \[
\begin{array}{r}
1.75 \\
(44.5)
\end{array}
\] & \[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\] \\
\hline MA 45 ML 45 MC 45 & 250-0041 & \[
\begin{gathered}
1-3 / 4-12 \\
\text { UN }
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{aligned}
& 0.37 \\
& (9.4)
\end{aligned}
\] \\
\hline MA 45M ML 45M MC 45M & 250-0297 & M45x1.5 & \[
\begin{gathered}
2.25 \\
(57.2)
\end{gathered}
\] & \[
\begin{aligned}
& 0.37 \\
& (9.4)
\end{aligned}
\] \\
\hline MA 64 ML 64 MC 64 & 250-0042 & \[
\begin{gathered}
2-1 / 2-12 \\
U N
\end{gathered}
\] & \[
\begin{gathered}
3.00 \\
(76.2)
\end{gathered}
\] & \[
\begin{aligned}
& 0.37 \\
& (9.4)
\end{aligned}
\] \\
\hline MA 64M ML 64M MC 64M & 250-0301 & M64x2 & \[
\begin{array}{r}
3.00 \\
(76.2)
\end{array}
\] & \[
\begin{aligned}
& 0.37 \\
& (9.4)
\end{aligned}
\] \\
\hline
\end{tabular}

Industrial Shock Absorbers Linear Decelerators

\section*{Side-Foot Mount Assembly}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Side-Foot Mount Assembly} \\
\hline Used With & Part \# & Used With & Part \# \\
\hline \begin{tabular}{l}
MA 33 \\
ML 33 \\
MC 33
\end{tabular} & 250-0015 & \multirow[t]{2}{*}{\begin{tabular}{l}
MA 6450 \\
MA 64100 \\
ML 6425 \\
ML 6450 \\
MC 6450 \\
MC 64100
\end{tabular}} & \multirow[t]{2}{*}{250-0300} \\
\hline MA 33M ML 33M MC 33M & 250-0294 & & \\
\hline \begin{tabular}{l}
MA 36 \\
ML 36 \\
MC 36
\end{tabular} & N/A & \multirow[t]{2}{*}{\begin{tabular}{l}
MA 6450M MA 64100M \\
ML 6425M \\
ML 6450M \\
MC 6450M \\
MC 64100M
\end{tabular}} & \multirow[t]{2}{*}{250-0304} \\
\hline \begin{tabular}{l}
MA 36M \\
ML 36M
\end{tabular} & N/A & & \\
\hline MC 36M & \multirow[b]{2}{*}{250-0025} & \[
\begin{aligned}
& \text { MA } 64150 \\
& \text { MC } 64150
\end{aligned}
\] & 250-0030 \\
\hline \[
\begin{aligned}
& \text { ML } 45 \\
& \text { MC } 45
\end{aligned}
\] & & \multirow[t]{2}{*}{MA 64150M MC 64150M} & \multirow[t]{2}{*}{250-0304} \\
\hline MA 45M ML 45M MC 45M & 250-0300 & & \\
\hline
\end{tabular}

Note: See pages 28, 30 and 32 for Mega Series side-foot mount drawings and dimensions.

\section*{Clevis Mount Assembly}

Clevis Mount Assembly
\begin{tabular}{|c|c|c|c|}
\hline Used With & Part \# & Used With & Part \# \\
\hline MA 33 & \multirow{5}{*}{250-0225} & ML 6425 & 250-0625 \\
\hline ML 33 & & ML 6425M & 250-0626 \\
\hline MC 33 & & MA 6450 & \\
\hline MAS & & ML 6450 & 250-0625 \\
\hline MLS & & MC 6450 & \\
\hline & \multirow{5}{*}{250-0323} & MA 6450M & \\
\hline ML 33M & & ML 6450M & 250-0626 \\
\hline MC 33M & & & \\
\hline MAS 33M & & \[
\begin{aligned}
& \text { MA } 64100 \\
& \text { MC } 64100
\end{aligned}
\] & 250-0625 \\
\hline \[
\begin{aligned}
& \text { MLS 33M } \\
& \text { MCS 33M }
\end{aligned}
\] & & MA 64100M & \\
\hline MAN 33 & \multirow{6}{*}{250-0018} & MC 64100M & 250-0626 \\
\hline MLN 33 & & MAN 64150 & \multirow{4}{*}{250-0625} \\
\hline MCN 33 & & MCN 64150 & \\
\hline MAA 33 & & MAA 64150 & \\
\hline MLA 33 & & MCA 64150 & \\
\hline MCA 33 & & MAN 64150M & \multirow{4}{*}{250-0626} \\
\hline MAN 33M & \multirow{6}{*}{250-0322} & MCN 64150M & \\
\hline MLN 33M & & MAA 64150M & \\
\hline MCN 33M & & MCA 64150M & \\
\hline MAA 33M & & MA 64150 & \\
\hline MLA 33M & & MCA 64150 & \\
\hline MCA 33M & & MAS 64150 & 250-0627 \\
\hline MA 45 & \multirow{3}{*}{250-0324} & MCS 64150 & \\
\hline ML 45 & & \multirow[t]{3}{*}{MA 64150M MCA 64150M MAS 64150M} & \multirow{5}{*}{250-0628} \\
\hline MC 45 & & & \\
\hline MA 45M & & & \\
\hline ML 45M & 250-0325 & MCS 64150M & \\
\hline MC 45M & & & \\
\hline
\end{tabular}

Note: See pages 28, 30 and 32 for Mega Series clevis mount drawings and dimensions.

\section*{Air-Oil Tanks}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{Dimensions} \\
\hline Bore Size & E & J & K & R & S & AB & AH & AL & AO & AT & EE & ST & ZK & EG & JT \\
\hline \(11 / 4\) & 127/32 & 3/4 & 1/4 & - & - & 11/32 & 29/32 & 25.32 & 3/16 & 31/32 & 1/8 & 5 5/8 & 6 & 1 & \(41 / 16\) \\
\hline \(31 / 4\) & \(33 / 4\) & 13/16 & 3/16 & 2.76 & \(23 / 4\) & 9/16 & \(115 / 16\) & \(11 / 4\) & 1/2 & 1/8 & 1/2 & 5 & 6 & - & - \\
\hline 6 & \(61 / 2\) & 1.41 & 7/16 & 4.88 & \(51 / 4\) & 13/16 & \(31 / 4\) & \(13 / 8\) & 5/8 & 3/16 & 3/4 & \(53 / 4\) & 7 & - & - \\
\hline 8 & \(81 / 2\) & 1.44 & 9/16 & 6.44 & \(71 / 8\) & 13/16 & \(41 / 4\) & 113/16 & 11/16 & 1/4 & 3/4 & \(65 / 8\) & 8 & - & - \\
\hline
\end{tabular}

\section*{Mounting and Circuits}

1. The piston rod is immediately returned to its extended position after completing the stroke.

2. The piston rod remains it its retracted position until it is signaled to return. Special bleed-down type check valve is requried for this circuit.

3. A recirculating cooling circuit allows warm oil to return to the tank while cool oil refills the shock absorber. A recirculating cooling circuit substantially increases the shock absorber's hourly energy capacity.

4. When connecting more than one shock absorber to an Air-Oil Tank, use caution in selecting the proper reservoir capacity. For two shock absorbers, the next largest Air-Oil Tank Size is usually adequate.

Capacity (Maximum)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & \begin{tabular}{c}
Oil Temp \\
(\(\left.{ }^{\circ} \mathrm{F}\right)\)
\end{tabular} & \begin{tabular}{c}
Max. Pressure \\
(psi)
\end{tabular} & \begin{tabular}{c}
Capacity \\
(cubic inches)
\end{tabular} & \begin{tabular}{c}
Recommended \\
shock absorber size
\end{tabular} \\
\hline 1.25 CB3TKU \(\times 2.00\) & 200 & 100 & 2.4 & \begin{tabular}{c}
MC 3325 \\
MC 3350
\end{tabular} \\
\hline 3.25 CB3TKU \(\times 5.00\) & 200 & 100 & 41.4 & \begin{tabular}{c}
MC 4525 \\
MC 64150
\end{tabular} \\
\hline 6.00CB3TKU \(\times 9.00\) & 200 & 100 & 254.5 & \(1-1 / 2 \times 5-3 \times 12\) \\
\hline 8.00 CB3TKU \(\times 15.00\) & 200 & 100 & 754 & \(4 \times 6-4 \times 16\) \\
\hline \begin{tabular}{l}
8.00 CB3TKUS \(\times 15.00\) \\
S=1 \(1 / 2\) NPTF ports in cap face
\end{tabular} & 200 & 100 & 754 & \(4 \times 6-4 \times 16\) \\
\hline
\end{tabular}

\section*{Offer of Sale}

The items described in this document and other documents or descriptions provided by Parker Hannifin Corporation, its subsidiaries and Divisions ("Company") and its authorized distributors, are hereby offered for sale at prices to be established by the Company, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any such item, when communicated to the Company, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.
1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments, acceptances and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition to, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.
2. Payment: Payment shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Amounts not timely paid shall bear interest at the maximum rate permitted by law for each month or portion thereof that the Buyer is late in making payment. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.
3. Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.
4. Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 18 months from date of shipment from the Company. THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO ITEMS PROVIDED HEREUNDER. SELLER MAKES NO OTHER WARRANTY, GUARANTEE, OR REPRESENTATION OF ANY KIND WHATSOEVER. ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO, MERCHANTABILITY AND FITNESS FOR PURPOSE, WHETHER EXPRESS, IMPLIED, OR ARISING BY OPERATION OF LAW, TRADE USAGE, OR COURSE OF DEALING ARE HEREBY DISCLAIMED.
NOTWITHSTANDING THE FOREGOING, THERE ARE NO WARRANTIES WHATSOEVER ON ITEMS BUILT OR ACQUIRED WHOLLY OR PARTIALLY, TO BUYER'S DESIGN OR SPECIFICATIONS.
5. Limitation of Remedy: SELLER'S LIABILITY ARISING FROM OR IN ANY WAY CONNECTED WITH THE ITEMS SOLD OR THIS CONTRACT SHALL BE LIMITED EXCLUSIVELY TO REPAIR OR REPLACEMENT OF THE ITEMS SOLD OR REFUND OF THE PURCHASE PRICE PAID BY BUYER, AT SELLER'S SOLE OPTION. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING FROM OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR ITEMS SOLD HEREUNDER, WHETHER ALLEGED TO ARISE FROM BREACH OF CONTRACT, EXPRESS OR IMPLIED WARRANTY, OR IN TORT, INCLUDING WITHOUT LIMITATION, NEGLIGENCE, FAILURETO WARN OR STRICT LIABILITY.
6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modification or cancellation shall be at Seller's discretion, and shall be upon such terms and conditions as Seller may require.
7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitations, dies, fixtures, molds and patterns, acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.
8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer, or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.
9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts for the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.
10. Indemnity For Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter "Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If an item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.
If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgements resulting from any claim that such item infringes any patent, trademark, copyright, trade dress, trade secret or any similar right.
11. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.
12. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the State of Ohio. No actions arising out of sale of the items sold hereunder or this Agreement may be brought by either party more than two (2) years after the cause of action accrues.

\section*{NOTES}

\title{
Extensive Automation Solutions
}

HMI and Controllers

Superior integration and support for machine control as well as HMI hardware and software.
www.parker.com/em/hmicont

Electric Actuators

Screw, belt-driven, and linear motor actuators for the complete range of industrial applications, offering precise motion and flexibility. www.parker.com/em/linear

Motors and Drives

Parker's family of innovative servo/stepper motors and drives continues to expand to meet the challenges of new technologies. www.parker.com/em/motordrive

\section*{Linear Actuators}

Aluminum and steel pneumatic cylinders, guided cylinders, rodless cylinders, and short stroke thrusters from the industry leader. www.parker.com/pneu/linear

Industry leader in the design and manufacture of pneumatic rack and pinion, and vane-style rotary actuators.

\section*{www.parker.com/pneu/rotary}

\section*{Vacuum Products} and Sensors

Vacuum solutions include a broad range of generators (integrated/inline), cups, and pressure sensors.
www.parker.com/pneu/vacsen

Grippers

Parallel, angular, and three jaw grippers are available in over 1,000 configurations.
www.parker.com/pneu/gripper

\section*{Airline Accessories}

Airline accessories include silencers, flow controls, and mufflers to round out Parker's pneumatic solution. www.parker.com/pneu/access

Valve technology that meets the most demanding requirements in any industrial application.
www.parker.com/pneu/valve

Air Preparation

Parker, the industry leader in air preparation, offers a complete line of products to ensure clean, dry, oil-free air.
www.parker.com/pneu/airprep

Connectors and Tubing

The most complete line of fluid connectors worldwide will meet virtually any automation application.
www.parker.com/pneu/fc

\section*{Parker IPS Structural Automation \\ }

More than 150 metric and inch profiles, integral motion components, and accessories for unlimited and flexible configurations. Pre-machined kits or complete assemblies. www.parker.com/ips

Covering Electromechanical and Pneumatic markets, each of our catalogs is paired with an interactive CD. Call for your comprehensive guides today. 800-C-Parker

Parker Hannifin Canada Motion and Control Division
160 Chisholm Drive
Milton, Ontario
Canada L9T 3G9
Phone: 905-693-3000
Fax: 905-876-1958```

